Effective classes in the projectivized k-th Hodge bundle
Gheorghita, Iulia. “Effective classes in the projectivized k-th Hodge bundle”, Boston College, 2021. http://hdl.handle.net/2345/bc-ir:109066.
Abstract
We study the classes of several loci in the projectivization of the k-th Hodge bundle over the moduli space of genus g curves and over the moduli space of genus g curves with n marked points. In particular we consider the class of the closure in the projectivization of the k-th Hodge bundle over the moduli space of genus g curves with n marked points of the codimension n locus where the n marked points are zeros of the k-differential. We compute this class when n=2 and provide a recursive formula for it when n>2. Moreover, when n=1 and k=1,2 we show its rigidity and extremality in the pseudoeffective cone. We also compute the classes of the closures in the projectivization of the k-th Hodge bundle over the moduli space of genus g curves of the loci where the k-differential has a zero at a Brill-Noether special point.