Crime generators, deterants, and attractors in micro places:

Author: James LeDoux

Persistent link: http://hdl.handle.net/2345/bc-ir:107379

This work is posted on eScholarship@BC, Boston College University Libraries.

2017

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/).
Crime Generators, Deterrents, and Attractors in Micro Places

James LeDoux
Department of Economics

Introduction

Criminal hotspots are heuristically understood, but seldom well-defined and empirically studied. The primary reason for this is that, historically, criminalological research has employed high-level units of analysis such as cities and police districts that overlook subtle differences within regions. In this thesis, I examine the rates at which crime concentrates into micro-geographic hotspots within cities, the stability of crime concentration levels and hotspot locations over time, and the spatial features that may cause high crime rates in specific micro-geographic environments. This research is made possible by a uniquely micro-level unit of analysis: the street segment. Where prior research has been limited by broad units of analysis, street segment-level data allows a city’s most problematic spaces to be revealed and studied.

Theory

Routine Activity Theory: Crime is caused at the intersection of the following three factors:
- Motivated offenders
- Easy targets
- A lack of capable guardians against crime

Crime concentrates in the areas where these factors overlap most often in people’s everyday activities.

Crime Pattern Theory: Crime is either opportunistic or planned. Local environments contribute to their crime rates through the extent to which they create criminal opportunities. Through this framework, a place can be one or more of the following:
- Crime generator: a place creating conditions favorable to crime that turn people’s previously-benign intentions criminal
- Crime attractor: a place well-known for creating opportunities for planned crime
- Fear generator: creates the fear being victimized, whether or not real danger is present
- Crime neutral: a place that neither creates common criminal opportunities or attracts willing offenders

Research Questions

1. To what extent does crime concentrate in small areas within cities?
2. How stable are criminal hotspots over time?
3. How do spatial features, such as storefronts and public services, relate to crime risk?

Crime Concentration in Micro Places Across Cities

Law of Concentration of Crime at Place: For a defined measure of crime at a specific microgeographic unit, the concentration of crime will fall within a narrow bandwidth of percentages for a defined cumulative proportion of crime

Findings: 50% of crime in major US cities concentrates in just 5.6% of street segments, and 25% of all crime concentrates in 1.6% of street segments

Stability of Criminal Hotspots

- 50% concentration level (red) and 25% concentration level (blue) virtually unaffected by volatile overall crime rates (black) and macroeconomic conditions
- Crime concentrates in roughly the same areas and at roughly the same levels year over year

Impact of Spatial Features on Crime

Raw coefficient: expected increase in crime on a street segment when increasing this feature by one
Standardized coefficient: expected standard deviation change in crime count resulting from a one-standard deviation change in this feature

<table>
<thead>
<tr>
<th>Raw Coefficient</th>
<th>Standardized Coefficient</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilities</td>
<td>0.901</td>
<td>0.066</td>
</tr>
<tr>
<td>Industrial</td>
<td>0.750</td>
<td>0.046</td>
</tr>
<tr>
<td>Residential</td>
<td>0.817</td>
<td>0.046</td>
</tr>
<tr>
<td>Business</td>
<td>0.117</td>
<td>0.149</td>
</tr>
<tr>
<td>Restaurants</td>
<td>0.117</td>
<td>0.149</td>
</tr>
<tr>
<td>Parks</td>
<td>0.125</td>
<td>0.049</td>
</tr>
<tr>
<td>Shopping</td>
<td>0.125</td>
<td>0.049</td>
</tr>
<tr>
<td>Schools</td>
<td>0.125</td>
<td>0.049</td>
</tr>
<tr>
<td>Public Safety</td>
<td>0.125</td>
<td>0.049</td>
</tr>
<tr>
<td>Educational</td>
<td>0.125</td>
<td>0.049</td>
</tr>
<tr>
<td>Environmental</td>
<td>0.125</td>
<td>0.049</td>
</tr>
<tr>
<td>Spatial Features</td>
<td>0.125</td>
<td>0.049</td>
</tr>
<tr>
<td>Traffic分析</td>
<td>0.125</td>
<td>0.049</td>
</tr>
<tr>
<td>Public Services</td>
<td>0.125</td>
<td>0.049</td>
</tr>
<tr>
<td>Crime Generator</td>
<td>0.125</td>
<td>0.049</td>
</tr>
<tr>
<td>Socioeconomic</td>
<td>0.125</td>
<td>0.049</td>
</tr>
<tr>
<td>Attractor</td>
<td>0.125</td>
<td>0.049</td>
</tr>
</tbody>
</table>

Facility features: count of observations within a set distance of each street segment centroid
Socioeconomic features: provided by Census and City of Chicago at the census tract and community area level

Conclusions

- Roughly 5% of major cities’ street segments are responsible for 50% of crime
- Crime concentration levels are robust to changes in macroeconomic conditions and the overall crime rate
- Bars, rehab centers, liquor stores, and other facilities have positive and significant relationships with crime levels in their local environments
- Non-facility spatial features such as bus stops, street length and graffiti presence also have explanatory power over crime level in micro places
- Spatial and facility-based features act as proxies for the unexplainable environments in which they exist
- Income level has the largest standardized impact on crime, with other socioeconomic factors such as housing crowdedness and local population age distribution also being significant indicators of crime

References

Data Sources:
Chicago Data Portal: Crimes - 2001 to Present
data.seattle.gov: Police Reports
Los Angeles Open Data: Crimes 2012 – 2016
Portland Police Bureau: Crime Statistics: Open Data
SF OpenData: SFPD Incidents – from 1 January 2003
OpenDataPhilly: Crime Incidents
Dallas OpenData: Police Incidents
Cincinnati Open Data Portal: Crime Incidents
US Census Bureau: American FactFinder

Key References:

Acknowledgements

I would first like to thank my advisor, Chris Maxwell, for his time and guidance on this thesis. I would also like to thank Robert Murphy for his organization of the Economics Honors Thesis program, Claudia Olivetti for introducing me to economic research and inspiring me to pursue research of my own, and Stefan Hoderlein for introducing me to ideas in computational econometrics that inspired this work in his Big Data course.