Using Heteroskedasticity to Identify and Estimate Mismeasured and Endogenous Regressor Models

Author: Arthur Lewbel

This work is posted on eScholarship@BC, Boston College University Libraries.

Originally posted on: http://ideas.repec.org/p/boc/bocoec/587.html
Using Heteroskedasticity to Identify and Estimate Mismeasured and Endogenous Regressor Models

Arthur Lewbel Boston College

Revised December 2010

Abstract

This paper proposes a new method of obtaining identification in mismeasured regressor models, triangular systems, and simultaneous equation systems. The method may be used in applications where other sources of identification such as instrumental variables or repeated measurements are not available. Associated estimators take the form of two stage least squares or generalized method of moments. Identification comes from a heteroskedastic covariance restriction that is shown to be a feature of many models of endogeneity or mismeasurement. Identification is also obtained for semiparametric partly linear models, and associated estimators are provided. Set identification bounds are derived for cases where point identifying assumptions fail to hold. An empirical application estimating Engel curves is provided.

Keywords: Simultaneous systems, endogeneity, identification, heteroskedasticity, measurement error, partly linear models. JEL codes: C3, C13, C14, D12

I would like to thank Roberto Rigobon, Frank Vella, Todd Prono, Susanne Schennach, Jerry Hausman, Raffaella Giacomini, Tiemen Woutersen, Christina Gathmann, Jim Heckman, and anonymous referees for helpful comments. Any errors are my own.

Arthur Lewbel, Department of Economics, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA, 02467, USA. (617)-552-3678, lewbel@bc.edu, http://www2.bc.edu/~lewbel/
1 Introduction

This paper provides a new method of identifying structural parameters in models with endogenous or mismeasured regressors. The method may be used in applications where other sources of identification such as instrumental variables, repeated measurements, or validation studies are not available. The identification comes from having regressors uncorrelated with the product of heteroskedastic errors, which is shown to be a feature of many models in which error correlations are due to an unobserved common factor, such as unobserved ability in returns to schooling models, or the measurement error in mismeasured regressor models. Even when this main identifying assumption does not hold, it is still possible to obtain set identification, specifically bounds, on the parameters of interest.

For the main model, estimators take the form of modified two stage least squares or generalized method of moments. Identification of semiparametric partly linear triangular and simultaneous systems are also considered. In an empirical application, this paper’s methodology is applied to deal with measurement error in total expenditures, resulting in Engel curve estimates that are similar to those obtained using a more standard instrument. A literature review shows similarly satisfactory empirical results obtained by other researchers using this paper’s methodology, based on earlier working paper versions of this paper.

Let Y_1 and Y_2 be observed endogenous variables, let X be a vector of observed exogenous regressors, and let $\varepsilon = (\varepsilon_1, \varepsilon_2)$ be unobserved errors. For now consider structural models of the form

$$Y_1 = X'\beta_1 + Y_2\gamma_1 + \varepsilon_1$$ \hspace{1cm} (1)

$$Y_2 = X'\beta_2 + Y_2\gamma_2 + \varepsilon_2$$ \hspace{1cm} (2)

Later the identification results will be extended to cases where $X'\beta_1$ and $X'\beta_2$ are replaced by unknown functions of X.

This system of equations is triangular when $\gamma_2 = 0$, otherwise it is fully simultaneous (if it is known that $\gamma_1 = 0$, then renumber the equations to set $\gamma_2 = 0$). The errors ε_1 and ε_2 may be correlated with each other.

Assume $E(\varepsilon X) = 0$, which is the standard minimal regression assumption for the exogenous regressors X. This permits identification of the reduced form, but is of course not sufficient to identify the structural model coefficients. Typically, structural model identification is obtained by imposing equality constraints on some coefficients, such as assuming that some elements of β_1 or β_2 are zero, which is equivalent to assuming the availability of instruments. This paper instead obtains identification by restricting correlations of $\varepsilon\varepsilon'$ with X. The resulting identification is based on higher moments, and so is likely to provide less reliable estimates than identification based on standard exclusion restrictions, but may be useful in applications where traditional instruments are not available, or could be used along with traditional instruments to increase efficiency.

Restricting correlations of $\varepsilon\varepsilon'$ with X does not automatically provide identification. In particular, the structural model parameters remain unidentified under the standard homoskedasticity assumption that $E(\varepsilon\varepsilon' \mid X)$ is constant, and more generally are not identified when ε and X are independent.
However, what this paper shows is that the model parameters may be identified given some heteroskedasticity. In particular, identification is obtained by assuming that \(\text{Cov}(X, \varepsilon_2^j) \neq 0 \) for \(j = 2 \) in a triangular system (or for both \(j = 1 \) and \(j = 2 \) in a fully simultaneous system) and assuming that \(\text{Cov}(Z, \varepsilon_1 \varepsilon_2) = 0 \) for an observed \(Z \), where \(Z \) can be a subset of \(X \). If \(\text{Cov}(Z, \varepsilon_1 \varepsilon_2) \neq 0 \) then set identification, specifically, bounds on parameters, can still be obtained as long as this covariance is not too large.

The remainder of this section provides examples of models where these identifying assumptions hold, and comparisons to related results in the literature

1.1 Independent Errors

For the simplest possible motivating example, let equations (1) and (2) hold. Suppose \(\varepsilon_1 \) and \(\varepsilon_2 \) have the standard model error property of being mean zero and are conditionally independent of each other, so \(\varepsilon_1 \perp \varepsilon_2 \mid Z \) and \(E(\varepsilon_1) = 0 \). It would then follow immediately that the key identifying assumption \(\text{cov}(Z, \varepsilon_1 \varepsilon_2) = 0 \) holds, because then \(E(\varepsilon_1 \varepsilon_2 Z) = E(\varepsilon_1)E(\varepsilon_2 Z) = 0 \). This, along with ordinary heteroskedasticity of the errors \(\varepsilon_1 \) and \(\varepsilon_2 \) then suffices for identification.

More generally, independence or uncorrelatedness of \(\varepsilon_1 \) and \(\varepsilon_2 \) is not required, e.g., it is shown below that the identifying assumptions still hold if \(\varepsilon_1 \) and \(\varepsilon_2 \) are correlated with each other through a factor structure, and they hold in a classical measurement error framework.

1.2 Classical Measurement Error

Consider a standard linear regression model with a classically mismeasured regressor. Suppose we do not have an outside instrument that correlates with the mismeasured regressor, which is the usual method of identifying this model. It is shown here that we can identify the coefficients in this model just based on heteroskedasticity. The only nonstandard assumption that will be needed for identification is the assumption that the errors in a linear projection of the mismeasured regressor on the other regressors be heteroskedastic, which is more plausible than homoskedasticity in most applications.

The goal is estimation of the coefficients \(\beta_1 \) and \(\gamma_1 \) in

\[
Y_1 = X' \beta_1 + Y_2^* \gamma_1 + V_1
\]

where the regression error \(V_1 \) is mean zero and independent of the covariates \(X, Y_2^* \). However the scalar regressor \(Y_2^* \) is mismeasured, and we instead observe \(Y_2 \) where

\[
Y_2 = Y_2^* + U, \quad E(U) = 0, \quad U \perp X, Y_1, Y_2^*.
\]

Here \(U \) is classical measurement error, so \(U \) is mean zero and independent of the true model components \(X, Y_2^* \), and \(V_1 \), or equivalently, independent of \(X, Y_2^* \), and \(Y_1 \). So far all of these assumptions are exactly those of the classical linear regression mismeasured regressor model.

Define \(V_2 \) as the residual from a linear projection of \(Y_2^* \) on \(X \), so by construction

\[
Y_2^* = X' \beta_2 + V_2, \quad E(XV_2) = 0
\]
Substituting out the unobservable \(Y_2^* \) yields the familiar triangular system associated with measurement error models

\[
\begin{align*}
 Y_1 &= X'\beta_1 + Y_2\gamma_1 + \epsilon_1, & \epsilon_1 &= -\gamma_1 U + V_1 \\
 Y_2 &= X'\beta_2 + \epsilon_2, & \epsilon_2 &= U + V_2
\end{align*}
\]

where the \(Y_1 \) equation is the structural equation to be estimated, the \(Y_2 \) equation is the instrument equation, and \(\epsilon_1 \) and \(\epsilon_2 \) are unobserved errors.

The standard way to obtain identification in this model is by an exclusion restriction, that is, by assuming that one or more elements of \(\beta_1 \) equal zero and that the corresponding elements of \(\beta_2 \) are nonzero. The corresponding elements of \(X \) are then instruments, and the model is estimated by linear two stage least squares, with \(Y_2 = X'\beta_2 + \epsilon_2 \) being the first stage regression and the second stage is the regression of \(Y_1 \) on \(\hat{Y}_2 \) and the subset of \(X \) that has nonzero coefficients.

Assume now that we have no exclusion restriction and hence no instrument, so there is no covariate that affects \(Y_2 \) without also affecting \(Y_1 \). In that case, the structural model coefficients cannot be identified in the usual way, and so for example are not identified when \(U, V_1, \) and \(V_2 \) are jointly normal and independent of \(X \).

However, in this mismeasured regressor model, there is no reason to believe that \(V_2 \), the error in the \(Y_2 \) equation, would be independent of \(X \), because the \(Y_2 \) equation (what would be the first stage regression in two stage least squares) is just the linear projection of \(Y_2 \) on \(X \), not a structural model motivated by any economic theory.

The perhaps surprising result, which follows from Theorem 1 below, is that if \(V_2 \) is heteroskedastic (and hence not independent of \(X \) as expected), then the structural model coefficients in this model are identified and can be easily estimated. The above assumptions yield a triangular model with \(E(X\epsilon) = 0, \text{Cov}(X, \epsilon_1^2) \neq 0, \) and \(\text{Cov}(X, \epsilon_1\epsilon_2) = 0, \) and hence satisfy this paper’s required conditions for identification.

The classical measurement error assumptions are used here by way of illustration. They are much stronger than necessary to apply this paper’s methodology. For example, identification is still possible when the measurement error \(U \) is correlated with some of the elements \(X \) and the error independence assumptions given above can be relaxed to restrictions on just a few low order moments.

1.3 Unobserved Single Factor Models

A general class of models that satisfy this paper’s assumptions are systems in which the correlation of errors across equations are due to the presence of an unobserved common factor \(U \), that is

\[
\begin{align*}
 Y_1 &= X'\beta_1 + Y_2\gamma_1 + \epsilon_1, & \epsilon_1 &= \alpha_1 U + V_1 \\
 Y_2 &= X'\beta_2 + Y_1\gamma_2 + \epsilon_2, & \epsilon_2 &= \alpha_2 U + V_2
\end{align*}
\]

where \(U, V_1, \) and \(V_2 \) are unobserved variables that are uncorrelated with \(X \) and are conditionally uncorrelated with each other, conditioning on \(X \). Here \(V_1 \) and \(V_2 \) are idiosyncratic errors
in the equations for \(Y_1 \) and \(Y_2 \), respectively, while \(U \) is an omitted variable or other unobserved factor that may directly influence both \(Y_1 \) and \(Y_2 \).

Examples:

MEASUREMENT ERROR. The mismeasured regressor model described above yields equation (3) with \(\alpha_1 = -\gamma_1 \) and equation (4) with \(\gamma_2 = 0 \) and \(\alpha_2 = 1 \). The unobserved common factor \(U \) is the measurement error in \(Y_2 \).

SUPPLY AND DEMAND. Equations (3) and (4) are supply and (inverse) demand functions, with \(Y_1 \) being quantity and \(Y_2 \) price. \(V_1 \) and \(V_2 \) are unobservables that only affect supply and demand, respectively, while \(U \) denotes an unobserved factor that affects both sides of the market, such as the price of an imperfect substitute.

RETURNS TO SCHOOLING. Equations (3) and (4) with \(\gamma_2 = 0 \) are models of wages \(Y_1 \) and schooling \(Y_2 \), with \(U \) representing an individual’s unobserved ability or drive (or more precisely the residual after projecting unobserved ability on \(X \)), which affects both her schooling and her productivity (Heckman 1974, 1979).

In each of these examples, some or all of the structural parameters are not identified without additional information. Typically, identification is obtained by imposing equality constraints on the coefficients of \(X \). In the measurement error and returns to schooling examples, assuming that one or more elements of \(\beta_1 \) equal zero permits estimation of the \(Y_1 \) equation using two stage least squares with instruments \(X \). For supply and demand, the typical identification restriction is that each equation possess this kind of exclusion assumption.

Assume we have no ordinary instruments and no equality constraints on the parameters. Let \(Z \) be a vector of observed exogenous variables, in particular, \(Z \) could be a subvector of \(X \), or \(Z \) could equal \(X \). Assume \(X \) is uncorrelated with \((U, V_1, V_2) \). Assume also that \(Z \) is uncorrelated with \((U^2, \text{UV}_j, V_1V_2) \) and that \(Z \) is correlated with \(V_2^2 \). If the model is simultaneous assume that \(Z \) is also correlated with \(V_1^2 \). An alternative set of stronger but more easily interpreted sufficient conditions are that one or both of the idiosyncratic errors \(V_j \) be heteroskedastic, \(\text{cov}(Z, V_1V_2) = 0 \), and that the common factor \(U \) be conditionally independent of \(Z \). These are all standard assumptions, except that one usually either imposes homoskedasticity or allows for heteroskedasticity, rather than requiring heteroskedasticity.

Given these assumptions,

\[
\text{cov}(Z, \varepsilon_1\varepsilon_2) = \text{cov}(Z, \alpha_1\alpha_2U^2 + \alpha_1UV_2 + \alpha_2U V_1 + V_1V_2) = 0
\]

\[
\text{cov}(Z, \varepsilon_2^2) = \text{cov}(Z, \alpha_2^2U^2 + 2\alpha_2UV_2 + V_2^2) = \text{cov}(Z, V_2^2) \neq 0
\]

which are the requirements for applying this paper’s identification theorems and associated estimators.

To apply this paper’s estimators it is not necessary to assume that the errors are actually given by a factor model like \(\varepsilon_j = \alpha_jU + V_j \). In particular, third and higher moment implications of factor model or classical measurement error constructions are not imposed. All that is required for identification and estimation are the moments

\[
E(X\varepsilon_1) = 0, \quad E(X\varepsilon_2) = 0, \quad \text{Cov}(Z, \varepsilon_1\varepsilon_2) = 0.
\]

(5)

along with some heteroskedasticity of \(\varepsilon_j \). The moments (5) provide identification whether or not \(Z \) is subvector of \(X \).
1.4 Empirical examples

Based on earlier working paper versions of this paper, a number of researchers apply this paper’s identification strategy and associated estimators to a variety of settings where ordinary instruments are either weak or difficult to obtain.

Giambona and Schwienbacher (2007) apply the method in a model relating the debt and leverage ratios of firms’ to the tangibility of their assets. Emran and Hou (2008) apply it to a model of household consumption in China based on distance to domestic and international markets. Sabia (2007) uses the method to estimate equations relating body weight to academic performance, and Rashad and Markowitz (2007) use it in a similar application involving body weight and health insurance. Finally, in a later section of this paper I report results for a model of food Engel curves where total expenditures may be mismeasured. All of these studies report that using this paper’s estimator yields results that are close to estimates based on traditional instruments (though Sabia 2007 also notes that his estimates are closer to ordinary least squares). Taken together, these studies provide evidence that the methodology proposed in this paper may be reliably applied in a variety of real data settings where traditional instrumental variables are not available.

1.5 Literature Review

Surveys of methods of identification in simultaneous systems include Hsiao (1983), Hausman (1983), and Fuller (1987). Roehrig (1988) provides a useful general characterization of identification in situations where nonlinearities contribute to identification, as is the case here. Particularly relevant for this paper is previous work that obtains identification based on variance and covariance constraints. With multiple equation systems, various homoskedastic factor model covariance restrictions are used along with exclusion assumptions in the LISREL class of models (Joreskog and Sorbom 1984). The idea of using heteroskedasticity in some way to help estimation appears in Wright (1928), and so is virtually as old as instrumental variables itself. Recent papers that use general restrictions on higher moments instead of outside instruments as a source of identification include Dagenais and Dagenais (1997), Lewbel (1997), Cragg (1997), and Erickson and Whited (2002).

A closely related result to this paper’s is Rigobon (2002, 2003), which uses heteroskedasticity based on discrete, multiple regimes instead of regressors. Some of Rigobon’s identification results can be interpreted as special cases of this paper’s models in which \(Z \) is a vector of binary dummy variables that index regimes and are not included amongst the regressors \(X \). Sentana (1992) and Sentana and Fiorentini (2001) employ a similar idea for identification in factor models. Hogan and Rigobon (2003) propose a model that, like this paper’s, involves decomposing the error term into components, some of which are heteroskedastic.

Klein and Vella (2003) also use heteroskedasticity restrictions to obtain identification in linear models without exclusion restrictions (an application of their method is Rummery, Vella and Verbeek 1999), and their model also implies restrictions on how \(\varepsilon_1^2, \varepsilon_2^2, \) and \(\varepsilon_1 \varepsilon_2 \) depends on regressors, but not the same restrictions as those used in the present paper. The method proposed here exploits a different set of heteroskedasticity restrictions from theirs, and as a result this paper’s estimators have many features that Klein and Vella (2003) do not, includ-
ing the following: This paper’s assumptions nest standard mismeasured regressor models and unobserved factor models, unlike theirs. This paper’s estimator extends to fully simultaneous systems, not just triangular systems, and extends to a class of semiparametric models. Their paper assumes a multiplicative form of heteroskedasticity that imposes strong restrictions on how all higher moments of errors depend on regressors, while this paper’s model places no restrictions on third and higher moments of \(\varepsilon_j \) conditional on \(X, Z \). Finally this paper provides some set identification results, yielding bounds on parameters, that hold when point identifying assumptions are violated.

The assumption used here that a product of errors be uncorrelated with covariates has occasionally been exploited in other contexts as well, e.g., to aid identification in a correlated random coefficients model, Heckman and Vytlacil (1998) assume covariates are uncorrelated with the product of a random coefficient and a regression model error.

Some papers have exploited GARCH system heteroskedastic specifications to obtain identification, including King, Sentana, and Wadhwani (1994) and Prono (2008). Other papers that exploit heteroskedasticity in some way to aid identification include Leamer (1981) and Feenstra (1994).

Variables that in past empirical applications have been proposed as instruments for identification might more plausibly be used as this paper’s \(Z \). For example, in the returns to schooling model Card (1995, 2002) and others propose using measures of access to schooling, such as distance to or cost of colleges in one’s area, as wage equation instruments. Access measures may be independent of unobserved ability (though see Carneiro and Heckman 2002) and affect the schooling decision. However, access may not be appropriate as an excluded variable in wage (or other outcome) equations because access may correlate with the type or quality of education one actually receives, or may be correlated with proximity to locations where good jobs are available. See, e.g., Hogan and Rigobon (2003). Therefore, instead of excluding measures of access to schooling or other proposed instruments from the outcome equation, it may be more appropriate to include them as regressors in both equations, and use them as this paper’s \(Z \) to identify returns to schooling, given by \(\gamma_1 \) in the triangular model where \(Y_1 \) is wages and \(Y_2 \) is schooling.

The next section describes this paper’s main identification results for triangular and then fully simultaneous systems. This is followed by a description of associated estimators and an empirical application to Engel curve estimation. Later sections provide extensions, including set identification (bounds) for when the point identification assumptions do not hold, and identification results for nonlinear and semiparametric systems of equations.

2 Point Identification

For simplicity it is assumed that the regressors \(X \) are ordinary random variables with finite second moments, so results are easily stated in terms of means and variances. However, it will be clear from the resulting estimators that this can be relaxed to handle cases such as time trends or deterministic regressors by replacing the relevant moments with probability limits of sample moments and sample projections.
2.1 Triangular Model Identification

First consider the linear triangular model

\[Y_1 = X' \beta_{10} + Y_2 \gamma_{10} + \varepsilon_1 \]
\[Y_2 = X' \beta_{20} + \varepsilon_2 \]

Here \(\beta_{10} \) indicates the true value of \(\beta_1 \), and similarly for the other parameters. Traditionally, this model would be identified by imposing equality constraints on \(\beta_{10} \). Alternatively, if the errors \(\varepsilon_1 \) and \(\varepsilon_2 \) were uncorrelated, this would be a recursive system and so the parameters would be identified. Identification conditions are given here that do not require uncorrelated errors or restrictions on \(\beta_{10} \). Example applications include unobserved factor models such as the mismeasured regressor model and the returns to schooling model described in the introduction.

ASSUMPTION A1: \(Y = (Y_1, Y_2)' \) and \(X \) are random vectors. \(E(XX') \), \(E(XY_1Y') \), \(E(XY_2Y') \), and \(E(XX') \) are finite and identified from data. \(E(XX') \) is nonsingular.

ASSUMPTION A2: \(E(X\varepsilon_1) = 0, E(X\varepsilon_2) = 0 \), and, for some random vector \(Z, cov(Z, \varepsilon_1\varepsilon_2) = 0 \).

The elements of \(Z \) can be discrete or continuous, and \(Z \) can be a vector or a scalar. Some or all of the elements of \(Z \) can also be elements of \(X \). Sections 1.1, 1.2, and 1.3 provide examples of models satisfying these assumptions.

Define matrices \(\Psi_{ZX} \) and \(\Psi_{ZZ} \) by

\[\Psi_{ZX} = E \left[\begin{pmatrix} X \\ [Z - E(Z)] \varepsilon_2 \end{pmatrix} \begin{pmatrix} X \\ Y_2 \end{pmatrix}' \right], \quad \Psi_{ZZ} = E \left[\begin{pmatrix} X \\ [Z - E(Z)] \varepsilon_2 \end{pmatrix} \begin{pmatrix} X \\ [Z - E(Z)] \varepsilon_2 \end{pmatrix}' \right] \]

and let \(\Psi \) be any positive definite matrix that has the same dimensions as \(\Psi_{ZZ} \).

THEOREM 1. Let Assumptions A1 and A2 hold for the model of equations (6) and (7). Assume \(cov(Z, \varepsilon_2^2) \neq 0 \). Then the structural parameters \(\beta_{10}, \beta_{20}, \gamma_{10}, \) and the errors \(\varepsilon_1 \) are identified, and

\[\begin{pmatrix} \beta_{10} \\ \gamma_{10} \end{pmatrix} = (\Psi_{ZX}' \Psi_{ZX})^{-1} \Psi_{ZX}' \Psi E \left[\begin{pmatrix} X \\ [Z - E(Z)] \varepsilon_2 \end{pmatrix} \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} \right] \]

Proofs are in the Appendix. For \(\Psi = \Psi_{ZZ}^{-1} \), Theorem 1 says that the structural parameters \(\beta_{10} \) and \(\gamma_{10} \) are identified by an ordinary linear two stage least squares regression of \(Y_1 \) on \(X \) and \(Y_2 \) using \(X \) and \([Z - E(Z)] \varepsilon_2 \) as instruments. The assumption that \(Z \) is uncorrelated with \(\varepsilon_1 \varepsilon_2 \) means that \((Z - \bar{Z}) \varepsilon_2 \) is a valid instrument for \(Y_2 \) in equation (6) since it is uncorrelated with \(\varepsilon_1 \), with the strength of the instrument (its correlation with \(Y_2 \) after controlling for
the other instruments \(X \) being proportional to the covariance of \((Z - \bar{Z}) \varepsilon_2\) with \(\varepsilon_2 \), which corresponds to the degree of heteroskedasticity of \(\varepsilon_2 \) with respect to \(Z \).

Taking \(\Psi = \Psi_{ZZ}^{-1} \) corresponds to estimation based on ordinary linear two stage least squares. Other choices of \(\Psi \) may be preferred for increased efficiency, accounting for error heteroskedasticity. Efficient GMM estimation of this model is discussed later.

The requirement that \(\text{cov}(Z, \varepsilon_2^2) \) be nonzero can be empirically tested, because this covariance can be estimated as the sample covariance between \(Z \) and the squared residuals from linearly regressing \(Y_2 \) on \(X \). For example, we may apply a Breusch and Pagan (1979) test for this form of heteroskedasticity to equation (7). Also, if \(\text{cov}(Z, \varepsilon_2^2) \) is close to or equal to zero, then \((Z - \bar{Z}) \varepsilon_2\) will be a weak or useless instrument, and this problem will be evident in the form of imprecise estimates with large standard errors. Hansen (1982) type tests of GMM moment restrictions can also be implemented to check validity of the model’s assumptions, particularly Assumption A2.

2.2 Fully Simultaneous Linear Model Identification

Now consider the fully simultaneous model

\[
Y_1 = X' \beta_{10} + Y_2 \gamma_{10} + \varepsilon_1 \\
Y_2 = X' \beta_{20} + Y_1 \gamma_{20} + \varepsilon_2
\]

where the errors \(\varepsilon_1 \) and \(\varepsilon_2 \) may be correlated, and again no equality constraints are imposed on the structural parameters \(\beta_{10}, \beta_{20}, \gamma_{10}, \) and \(\gamma_{20} \).

In some applications it is standard or convenient to normalize the second equation so that, like the first equation, the coefficient of \(Y_1 \) is set equal to one and the coefficient of \(Y_2 \) is to be estimated. An example is supply and demand, with \(Y_1 \) being quantity and \(Y_2 \) price. The identification results derived here immediately extend to handle that case, because identification of \(\gamma_{20} \) implies identification of \(1/\gamma_{20} \) and vice versa when \(\gamma_{20} \neq 0 \), which is the only case in which one could normalize the coefficient of \(Y_1 \) to equal one in the second equation.

Some assumptions in addition to A1 and A2 are required to identify this fully simultaneous model. Given Assumption A2, reduced form errors \(W_j \) are

\[
W_j = Y_j - X' E(XX')^{-1} E(YX_j)
\]

ASSUMPTION A3: Define \(W_j \) by equation (11) for \(j = 1, 2 \). The matrix \(\Phi_W \), defined as the matrix with columns given by the vectors \(\text{cov}(Z, W_1^2) \) and \(\text{cov}(Z, W_2^2) \), has rank two.

Assumption A3 requires \(Z \) to contain at least two elements (though sometimes one element of \(Z \) can be a constant; see Corollary 1 later). If \(E(\varepsilon_1 \varepsilon_2 | \bar{Z}) = E(\varepsilon_1 \varepsilon_2) \) for some scalar \(\bar{Z} \), as would arise if the common unobservable \(U \) is independent of \(\bar{Z} \), then Assumptions A2 and A3 might be satisfied by letting \(Z \) be a vector of different functions of \(\bar{Z} \), for example defining \(Z \) as the vector of elements \(\bar{Z} \) and \(\bar{Z}^2 \) (as long as \(\bar{Z} \) is not binary).
Assumption A3 is testable, because one may estimate W_j as the residuals from linearly regressing Y_j on X, and then use Z and the estimated W_j to estimate $cov(Z, W_j^2)$. A Breusch and Pagan (1979) test may be applied to each of these reduced form regressions. An estimated matrix rank test like Cragg and Donald (1996) could be applied to the resulting estimated matrix Φ'_W, or perhaps more simply test if the determinant of $\Phi'_W\Phi_W$ is zero, since rank two requires that $\Phi'_W\Phi_W$ be nonsingular.

ASSUMPTION A4: Let Γ be the set of possible values of $(\gamma_{10}, \gamma_{20})$. If $(\gamma_{11}, \gamma_{12}) \in \Gamma$, then $(\gamma_{21}^{-1}, \gamma_{11}^{-1}) \notin \Gamma$.

Given any nonzero values of $(\gamma_{10}, \gamma_{20})$, solving equation (9) for Y_2 and equation (10) for Y_1 yields another representation of the exact same system of equations, but having coefficients $(\gamma_{20}^{-1}, \gamma_{10}^{-1})$ instead of $(\gamma_{10}, \gamma_{20})$. As long as $(\gamma_{10}, \gamma_{20}) \neq (1, 1)$ and no restrictions are placed on β_{10} and β_{20}, Assumption A4 simply says that we have chosen (either by arbitrary convenience or external knowledge) one of these two equivalent representations of the system. Assumption A4 is not needed for models that break this symmetry either by being triangular as in Theorem 1, or through an exclusion assumption as in Corollary 2 below. In other models the choice of Γ may be determined by context, e.g., many economic models (like those requiring stationary dynamics or decreasing returns to scale) require coefficients like γ_1 and γ_2 to be less than one in absolute value, which then defines a set Γ that satisfies Assumption A4. In a supply and demand model Γ may be defined by downward sloping demand and upward sloping supply curves, since in that case Γ only includes elements γ_{11}, γ_{21} where $\gamma_{11} \geq 0$ and $\gamma_{21} \leq 0$, and any values that violate Assumption A4 would have the wrong signs. This is related to Fisher’s (1976) finding that sign constraints in simultaneous systems yield regions of admissible parameter values.

THEOREM 2. Let Assumptions A1, A2, A3, and A4 hold in the model of equations (9) and (10). Then the structural parameters $\beta_{10}, \beta_{20}, \gamma_{10}, \gamma_{20}$, and the errors ε are identified.

2.3 Additional Simultaneous Model Results

LEMMA 1: Define Φ_ε to be the matrix with columns given by the vectors $cov(Z, \varepsilon_1^2)$ and $cov(Z, \varepsilon_2^2)$. Let Assumptions A1 and A2 hold, and assume $|\gamma_{10}\gamma_{20}| \neq 1$. Then Assumption A3 holds if and only if Φ_ε has rank two.

Lemma 1 assumes $\gamma_{10}\gamma_{20} \neq 1$ and $\gamma_{10}\gamma_{20} \neq -1$. The case $\gamma_{10}\gamma_{20} = 1$ is ruled out by Assumption A4 in Theorem 2. This case cannot happen in the returns to schooling or measurement error applications because triangular systems have $\gamma_{20} = 0$. Having $\gamma_{10}\gamma_{20} = 1$ also cannot occur in the supply and demand application, because the slopes of supply and demand curves make $\gamma_{10}\gamma_{20} \leq 0$. As shown in the proof of Theorem 2, the case of $\gamma_{10}\gamma_{20} = -1$ is ruled out by Assumption A3, because it causes Φ_ε to have rank less than two. However, Theorem 1 can be relaxed to allow $\gamma_{10}\gamma_{20} = -1$, by replacing Assumption A3 with the assumption that Φ_ε has rank two, because then equation (27) in the proof still holds and identifies γ_{10}/γ_{20}, which along with $\gamma_{10}\gamma_{20} = -1$ and some sign restrictions could identify
\(\gamma_{10}\) and \(\gamma_{20}\) in this case. However, Assumption A3 has the advantage of being empirically
testable.

In either case, Theorem 2 requires both \(\varepsilon_1\) and \(\varepsilon_2\) to be heteroskedastic with variances
that depend upon \(Z\), since otherwise the vectors \(\text{cov}(Z,\varepsilon_1^2)\) and \(\text{cov}(Z,\varepsilon_2^2)\) will equal zero. Moreover, the variances of \(\varepsilon_1\) and \(\varepsilon_2\) must be different functions of \(Z\) for the rank of \(\Phi_{\varepsilon}\) to be
two.

COROLLARY 1. Let Assumptions A1, A2, A3, and A4 hold in the model of equations (9) and (10), replacing \(\text{cov}(Z,\varepsilon_1\varepsilon_2)\) in Assumption A2 with \(E(Z\varepsilon_1\varepsilon_2)\) and replacing \(\text{cov}(Z, W_j^2)\) with \(E(ZW_j^2)\) in Assumption A3, for \(j = 1, 2\). Then the structural parameters \(\beta_{10}, \beta_{20}, \gamma_{10}, \gamma_{20}\), and the errors \(\varepsilon\) are identified.

Corollary 1 can be used in applications where \(E(\varepsilon_1\varepsilon_2) = 0\). Theorem 2 could also be
used in this case, but Corollary 1 provides additional moments. In particular, if only a scalar \(\tilde{Z}\) is known to satisfy \(\text{cov}(\tilde{Z},\varepsilon_1\varepsilon_2) = 0\), then identification by Theorem 2 will fail because the rank condition in Assumption A3 is violated with \(Z = \tilde{Z}\), but identification may still be possible using Corollary 1 because there we may let \(Z = (1, \tilde{Z})\).

COROLLARY 2. Let Assumptions A1 and A2 hold for the model of equations (9) and (10). Assume \(\text{cov}(Z, \varepsilon_2^2) \neq 0\), that some element of \(\beta_{20}\) is known to equal zero and the corresponding element of \(\beta_{10}\) is nonzero. Then the structural parameters \(\beta_{10}, \beta_{20}, \gamma_{10}, \gamma_{20}\), and the errors \(\varepsilon\) are identified.

Corollary 2 is like Theorem 1, except that it assumes an element of \(\beta_{20}\) is zero instead of assuming \(\gamma_{20}\) is zero to identify equation (10). Then, as in Theorem 1, Corollary 2 uses \(\text{cov}(Z, \varepsilon_1\varepsilon_2) = 0\) to identify equation (9) without imposing the rank two condition of Assumption A3 and the inequality constraints of Assumption A4. Only a scalar \(Z\) is needed for identification using Theorem 1 or Corollaries 1 or 2.

3 Estimation

3.1 Simultaneous System Estimation

Consider estimation of the structural model of equations (9) and (10) based on Theorem 2. Define \(S\) to be the vector of elements of \(Y, X\), and the elements of \(Z\) that are not already contained in \(X\), if any.

Let \(\mu = E(Z)\) and let \(\theta\) denote the set of parameters \(\{\gamma_1, \gamma_2, \beta_1, \beta_2, \mu\}\). Define the vector valued functions

\[
Q_1(\theta, S) = X(Y_1 - X'\beta_1 - Y_2\gamma_1) \\
Q_2(\theta, S) = X(Y_2 - X'\beta_2 - Y_1\gamma_2) \\
Q_3(\theta, S) = Z - \mu \\
Q_4(\theta, S) = (Z - \mu)(Y_1 - X'\beta_1 - Y_2\gamma_1)(Y_2 - X'\beta_2 - Y_1\gamma_2)
\]
Define \(Q(\theta, S) \) to be the vector obtained by stacking the above four vectors into one long vector.

COROLLARY 3: Assume equations (9) and (10) hold. Define \(\theta, S, \) and \(Q(\theta, S) \) as above. Let Assumptions A1, A2, A3, and A4 hold. Let \(\Theta \) be the set of all values \(\theta \) might take on, and let \(\theta_0 \) denote the true value of \(\theta \). Then the only value of \(\theta \in \Theta \) that satisfies \(E[Q(\theta, S)] = 0 \) is \(\theta = \theta_0 \).

A simple variant of Corollary 3 is that if \(E(\varepsilon_1 \varepsilon_2) = 0 \) then \(\mu \) can be dropped from \(\theta \), with \(Q_3 \) dropped from \(Q \), and the \(Z - \mu \) term in \(Q_4 \) replaced with just \(Z \).

Given Corollary 3, GMM estimation of the model of equations (9) and (10) is completely straightforward. With a sample of \(n \) observations \(S_1, \ldots, S_n \), the standard Hansen (1982) GMM estimator is

\[
\hat{\theta} = \arg \min_{\theta \in \Theta} \sum_{i=1}^{n} Q(\theta, S_i)' \Omega_n^{-1} \sum_{i=1}^{n} Q(\theta, S_i)
\]

(12)

for some sequence of positive definite \(\Omega_n \). If the observations \(S_i \) are independently and identically distributed and if \(\Omega_n \) is a consistent estimator of \(\Omega_0 = E \left[Q(\theta_0, S)Q(\theta_0, S)' \right] \), then the resulting estimator is efficient GMM with

\[
\sqrt{n}(\hat{\theta} - \theta_0) \rightarrow^d N \left(0, E \left(\frac{\partial Q(\theta_0, S)}{\partial \theta'} \right) \Omega_0^{-1} E \left(\frac{\partial Q(\theta_0, S)}{\partial \theta'} \right)' \right)
\]

(13)

More generally, with dependent data, standard time series versions of GMM would be directly applicable. Alternative moment based estimators with possibly better small sample properties, such as Generalized Empirical Likelihood, could be used instead of GMM. See, e.g., Newey and Smith (2004). Also, if these moment conditions are weak (as might occur if the errors are close to homoskedastic), then alternative limiting distribution theory based on weak instruments, such as Staiger and Stock (1997), would be immediately applicable. See Stock, Wright, and Yogo (2002) for a survey of such estimators.

The standard regularity conditions for the large sample properties of GMM impose compactness of \(\Theta \). When \(\gamma_{20} \neq 0 \) this must be reconciled with Assumption A4 and with Lemma 1. For example, in the supply and demand model we might define \(\Theta \) so that the product of the first two elements of every \(\theta \in \Theta \) is finite, nonpositive, and excludes an open neighborhood of minus one. This last constraint could be relaxed as discussed after Lemma 1.

If one wished to normalize the second equation so that the coefficient of \(Y_1 \) equaled one, as might be more natural in a supply and demand system, then the same GMM estimator could be used just by replacing \(Y_2 - X'\beta_2 - Y_1\gamma_2 \) in the \(Q_2 \) and \(Q_4 \) functions with \(Y_1 - X'\beta_2 - Y_2\gamma_2 \), redefining \(\beta_2 \) and \(\gamma_2 \) accordingly.

Based on the proof of Theorem 2, a numerically simpler but possibly less efficient estimator would be the following. First, let \(\hat{W}_j \) be the vector of residuals from linearly regressing \(Y_j \) on \(X \). Next, let \(\hat{C}_{jkh} \) be the sample covariance of \(\hat{W}_j \hat{W}_k \) with \(Z_h \), where \(Z_h \) is the \(h'th \) element of the vector \(Z \). Assume \(Z \) has a total of \(K \) elements. Based on equation (27), estimate \(\gamma_1 \)
and γ_2 by

$$(\hat{\gamma}_1, \hat{\gamma}_2) = \arg \min_{(\gamma_1, \gamma_2) \in \Gamma} \sum_{h=1}^{K} ((1 + \gamma_1 \gamma_2) \hat{C}_{12h} - \gamma_1 \hat{C}_{22h} - \gamma_2 \hat{C}_{11h})^2$$

where Γ is a compact set satisfying Assumption A4. The above estimator for γ_1 and γ_2 is numerically equivalent to an ordinary nonlinear least squares regression over K observations, where K is the number of elements of Z. Finally, β_1 and β_2 may be estimated by linearly regressing $Y_1 - Y_2 \hat{\gamma}_1$ and $Y_2 - Y_1 \hat{\gamma}_2$ on X, respectively. The consistency of this procedure follows from the consistency of each step, which in turn is based on the steps of the identification proof of Theorem 1 and the consistency of regressions and sample covariances.

In practice, this simple procedure might be useful for generating consistent starting values for efficient GMM.

3.2 Triangular System Estimation

The GMM estimator used for the fully simultaneous system can be applied to the triangular system of Theorem 1 by setting $\gamma_2 = 0$. Define S and μ as before, and now let $\theta = \{\gamma_1, \beta_1, \beta_2, \mu\}$ and

$$Q_1(\theta, S) = X(Y_1 - X' \beta_1 - Y_2 \gamma_1)$$

$$Q_2(\theta, S) = X(Y_2 - X' \beta_2)$$

$$Q_3(\theta, S) = Z - \mu$$

$$Q_4(\theta, S) = (Z - \mu)(Y_1 - X' \beta_1 - Y_2 \gamma_1)(Y_2 - X' \beta_2).$$

Let $Q(\theta, S)$ be the vector obtained by stacking the above four vectors into one long vector, and we immediately obtain

COROLLARY 4: Assume equations (6) and (7) hold. Define θ, S, and $Q(\theta, S)$ as above. Let Assumptions A1 and A2 hold with $\text{cov}(Z, W_2^2) \neq 0$. Let Θ be the set of all values θ might take on, and let θ_0 denote the true value of θ. Then the only value of $\theta \in \Theta$ that satisfies $E[Q(\theta, S)] = 0$ is $\theta = \theta_0$.

The GMM estimator (12) and limiting distribution (13) then follow immediately.

Based on Theorem 1, a simpler estimator of the triangular system of equations (6) and (7) is as follows. With $\gamma_{20} = 0$, β_{20} can be estimated by linearly regressing Y_2 on X. Then, letting \hat{e}_{2i} be the residuals from this regression, β_{10} and γ_{10} can be estimated by an ordinary linear two stage least squares regression of Y_1 on Y_2 and X, using X and $(Z - \bar{Z})\hat{e}_2$ as instruments, where \bar{Z} is the sample mean of Z. Letting overbars denote sample averages, the resulting estimators are

$$(\hat{\beta}_2 = \bar{X} \bar{X}^{-1} \bar{X} \bar{Y}_2, \quad \hat{e}_2 = \bar{Y}_2 - \bar{X}^T \hat{\beta}_2)$$

$$(\hat{\gamma}_1, \hat{\beta}_1) = (\hat{\Psi}_X^T \hat{\Psi}_X)^{-1} \hat{\Psi}_X^T \hat{\Psi}_Z \hat{\Psi}_Z^{-1} \left(\begin{array}{c} \bar{X} \bar{Y}_1 \\ (Z - \bar{Z})\hat{e}_2 \bar{Y}_1 \end{array} \right)$$

(14)
where \(\hat{\Psi}_{ZX} \) replaces the expectation defining \(\Psi_{ZX} \) with a sample average, and similarly for \(\hat{\Psi} \), in particular, for ordinary two stage least squares \(\hat{\Psi} \) would be a consistent estimator of \(\hat{\Psi}_{Z}^{-1} \). The limiting distribution for \(\hat{\beta}_2 \) is standard ordinary least squares. The distribution for \(\hat{\beta}_1 \) and \(\hat{\gamma}_1 \) is basically that of ordinary two stage least squares, except account must be taken of the estimation error in the instruments \((Z - \bar{Y})\hat{\epsilon}_2 \). Using the standard theory of two step estimators (see, e.g., Newey and McFadden 1994), with independent, identically distributed observations this gives

\[
\sqrt{n} \left[\begin{pmatrix} \hat{\beta}_1 \\ \hat{\gamma}_1 \end{pmatrix} - \begin{pmatrix} \beta_{10} \\ \gamma_{10} \end{pmatrix} \right] \rightarrow^d N \left(0, \Psi_{ZX}^{-1} \Psi_{XX}^{-1} \vartheta \right)
\]

where

\[
R = [Z - E(Z)]\hat{\epsilon}_2 - \text{cov}(Z, X')E(XX')^{-1}X\hat{\epsilon}_2
\]

is the influence function associated with \((Z - \bar{Y})\hat{\epsilon}_2 \).

While numerically simpler, since no numerical searching is required, this two stage least square estimator could be less efficient than GMM. It will be numerically identical to GMM when the parameters are exactly identified rather than overidentified, that is, when \(Z \) is a scalar. More generally this two stage least squares estimator could be used for generating consistent starting values for efficient GMM estimation.

3.3 Extension: Additional Endogenous Regressors

We consider two cases here: additional endogenous regressors for which we have ordinary outside instruments, and additional endogenous regressors to be identified using heteroskedasticity.

In the triangular system, the estimator can be described as a linear two stage least squares regression of \(Y_1 \) on \(X \) and on \(Y_2 \), using \(X \) and an estimate of \([Z - E(Z)]\hat{\epsilon}_2 \) as instruments. Suppose now that, in addition to \(Y_2 \), one or more elements of \(X \) are also endogenous. Suppose for now that we also have a set of ordinary instruments \(P \) (so \(P \) includes all the exogenous elements of \(X \), and enough additional outside instruments so that \(P \) has at least the same number of elements as \(X \)). It then follows that estimation could be done by a linear two stage least squares regression of \(Y_1 \) on \(X \) and on \(Y_2 \), using \(P \) and an estimate of \([Z - E(Z)]\hat{\epsilon}_2 \) as instruments. Note however that it will now be necessary to also estimate the \(Y_2 \) equation by two stage least squares, that is, we must first regress \(Y_2 \) on \(X \) by two stage least squares using instruments \(P \) to obtain the estimated coefficient \(\hat{\beta}_2 \), before constructing \(\hat{\epsilon}_2 = Y_2 - X'\hat{\beta}_2 \). Then as before the estimate of \([Z - E(Z)]\hat{\epsilon}_2 \) is \((Z - \bar{Y})\hat{\epsilon}_2 \). Alternatively, the GMM estimator now has \(Q_1(\theta, S) \) and \(Q_2(\theta, S) \) given by \(Q_1(\theta, S) = P(Y_1 - X'\hat{\beta}_1 - Y_2\gamma_1) \) and \(Q_2(\theta, S) = P(Y_2 - X'\hat{\beta}_2) \), while \(Q_3(\theta, S) \) and \(Q_4(\theta, S) \) are the same as before.

Similar logic extends to the case where we have more than one endogenous regressor to be identified from heteroskedasticity. For example, suppose we have the model

\[
Y_1 = X'\beta_{10} + Y_2\gamma_{10} + Y_3\delta_{10} + \epsilon_1
\]

\[
Y_2 = X'\beta_{20} + \epsilon_2, \quad Y_3 = X'\beta_{30} + \epsilon_3
\]
So now we have two endogenous regressors, \(Y_2 \) and \(Y_3 \), with no available outside instruments or exclusions. If our assumptions hold both for \(\varepsilon_2 \) and for \(\varepsilon_3 \) in place of \(\varepsilon_2 \), then the model for \(Y_1 \) can be estimated by two stage least squares, using as instruments \(X \) and estimates of both \([Z - E(Z)]\varepsilon_2 \) and \([Z - E(Z)]\varepsilon_3 \) as instruments.

4 Engel Curve Estimates

An Engel curve for food is empirically estimated, where total expenditures may be mismeasured. Total expenditures are subject to potentially large measurement errors, due in part to infrequently purchased items. See, e.g., Meghir and Robin (1992). The data consist of the same set of demographically homogeneous households that were used to analyze Engel curves in Banks, Blundell and Lewbel (1997). These are all households in the United Kingdom Family Expenditure Survey 1980-1982 composed of two married adults without children, living in the Southeast (including London). The dependent variable \(Y_1 \) is the food budget share and the possibly mismeasured regressor \(Y_2 \) is log real total expenditures. Sample means are \(\bar{Y}_1 = .285 \) and \(\bar{Y}_2 = .599 \). The other regressors \(X \) are a constant, age, spouse's age, squared ages, seasonal dummies, and dummies for spouse working, gas central heating, ownership of a washing machine, one car, and two cars. There are 854 observations.

The model is \(Y_1 = X'\beta_1 + Y_2\gamma_1 + \varepsilon_1 \). This is the Working (1943) and Leser (1963) functional form for Engel curves. Nonparametric and parametric regression analyses of this data show that this functional form fits food (though not other) budget shares quite well. See, e.g., Banks, Blundell and Lewbel (1997), figure 1A.

Table 2 summarizes the empirical results. Ordinary least squares, which does not account for mismeasurement, has an estimated log total expenditure coefficient of \(\hat{\gamma}_1 = -.127 \). Ordinary two stage least squares, using log total income as an instrument, substantially reduces the estimated coefficient to \(\hat{\gamma}_1 = -.086 \). This is model TSLS 1 or equivalently GMM 1 in Table 2. TSLS1 and GMM 1 are exactly identified, and so are numerically equivalent.

If we did not observe income for use as an instrument, we might instead apply the GMM estimator based on Corollary 4, using the moments \(\text{cov}(Z, \varepsilon_1\varepsilon_2) = 0 \). As discussed in the introduction, with classical measurement error we may let \(Z \) equal all the elements of \(X \) except the constant. The result is model GMM 2 in Table 2, which yields \(\hat{\gamma}_1 = -.078 \). This is relatively close to the estimate based on the external instrument log income, as would be expected if income is a valid instrument and if this paper's methodology for identification and estimation without external instruments is also valid. The standard errors in GMM 2 are a good bit higher than those of GMM 1, suggesting that not having an external instrument hurts efficiency.

The estimates based on Corollary 4 are overidentified, so the GMM 2 estimates differ numerically from the two stage least squares version of this estimator, reported as TSLS 2, which uses \((Z - \bar{Z})\tilde{\varepsilon}_2 \) as instruments (equation 14). The GMM 2 estimates are closer than TSLS 2 to the income instrument based estimates GMM 1, and have smaller standard errors, which shows that the increased asymptotic efficiency of GMM is valuable here. A Hansen (1982) test fails to reject the overidentifying moments in this model at the 5% level, though the p-value of 6.5% is close to rejecting.
Table 2 also reports estimates obtained using both moments based on the external instrument, log income, and on \(\text{cov}(Z, \varepsilon_1 \varepsilon_2) = 0 \). The results, in TSLS 3 and GMM 3, are very similar to TSLS 1 and GMM 1, which just use the external instrument. This is consistent with validity of both sets of identifying moments, but with the outside instrument being much stronger or more informative, as expected. The Hansen test also fails to reject this joint set of overidentifying moments, with a p-value of 12.5%.

To keep the analysis simple, possible mismeasurement of the food budget share arising from mismeasurement of total expenditures, as in Lewbel (1996), has been ignored. This is not an uncommon assumption, e.g., Hausman, Newey, and Powell (1995) is a prominent example of Engel curve estimation assuming that budget shares are not mismeasured and log total expenditures suffer classical measurement error (though with the complication of a polynomial functional form). However, as a check the Engel curves were reestimated in the form of quantities of food regressed on levels of total expenditures. The results were more favorable than those reported in Tables 1 and 2. In particular, the ordinary least squares estimate of the coefficient of total expenditures was .124, the two stage least squares estimate using income as an instrument was .172, and the two stage least squares estimate using this paper’s moments was .174, nearly identical to the estimate based on the outside instrument.

One may question the validity of the assumptions for applying Theorem 1 in this application. Also, although income is commonly used as an outside instrument for total expenditures, it could still have flaws as an instrument (e.g., it is possible for reported consumption and income to have common sources of measurement errors). In particular, the estimates show a reversal of the usual attenuation direction of measurement error bias, which suggests some violation of the assumptions of the classical measurement error model, e.g., it is possible that the measurement error could be negatively correlated with instruments or with other covariates.

Still, it is encouraging that this paper’s methodology for obtaining estimates without external instruments yields estimates that are close to (though not as statistically significant as) estimates that are obtained by using an ordinary external instrument, and the resulting overidentifying moments are not statistically rejected.

In practice, this paper’s estimators will be most useful for applications where external instruments are either weak or unavailable. The reason for applying it here in the Engel curve context, where a strong external instrument exists, is to verify that the method works in real data, in the sense that this paper’s estimator, applied without using the external instrument, produces estimates that are very close to those that were obtained when using the outside instrument. The fact that the method is seen to work in this context where the results can be checked should be encouraging for other applications where alternative strong instruments are not available.

5 Set Identification Relaxing Identifying Assumptions

This paper’s methodology is based on three assumptions, namely, regressors \(X \) uncorrelated with errors \(\varepsilon \), heteroskedastic errors \(\varepsilon \), and \(\text{cov}(Z, \varepsilon_1 \varepsilon_2) = 0 \). As shown earlier, this last assumption arises from classical measurement error and omitted factor models, but one may still question whether it holds exactly in practice. Theorem 3 below shows that one can still
identify sets, specifically interval bounds, for the model parameters when this assumption is violated, by assuming this covariance is small rather than zero. Small here means that this covariance is small relative to the heteroskedasticity in \(\varepsilon_2 \), specifically, Theorem 3 below assumes that the correlation between \(Z \) and \(\varepsilon_1 \varepsilon_2 \) is smaller (in magnitude) than the correlation between \(Z \) and \(\varepsilon_2^2 \).

For convenience, Theorem 3 is stated using a scalar \(Z \), but given a vector \(Z \) one could exploit the fact that Theorem 3 would then hold for any linear combination of the elements of \(Z \), and one could choose the linear combination that minimizes the estimated size of the identified set.

Define \(W_j \) by equation (11) for \(j = 1, 2 \). Given a random scalar \(Z \) and a scalar constant \(\zeta \) define \(\Gamma_1 \) as the set of all values of \(\gamma_1 \) that lie in the closed interval bounded by the two roots (if they are real) of the quadratic equation

\[
\frac{[\text{cov}(W_1 W_2, Z)]^2}{[\text{cov}(W_2^2, Z)]^2} - \frac{\text{var}(W_1 W_2)}{\text{var}(W_2^2)} \tau^2 + 2 \left(\frac{\text{cov}(W_1 W_2, W_2^2)}{\text{var}(W_2^2)} - \frac{\text{cov}(W_1 W_2, Z)}{\text{cov}(W_2^2, Z)} \right) \gamma_1 + \left(1 - \tau^2 \right) \gamma_1^2 = 0
\]

(15)

Also, define \(B_1 \) as the set of all value of \(\beta_1 = E(X'X)^{-1} E[X(Y_1 - Y_2 \gamma_1)] \) for each \(\gamma_1 \in \Gamma_1 \).

THEOREM 3. Let Assumption A1 hold for the model of equations (6) and (7). Assume \(E(X\varepsilon_1) = 0, E(X\varepsilon_2) = 0 \), and, for some observed random scalar \(Z \) and some non-negative constant \(\tau < 1, |\text{corr}(Z, \varepsilon_1 \varepsilon_2)| \leq \tau |\text{corr}(Z, \varepsilon_2^2)| \). Then the structural parameters \(\gamma_{10} \) and \(\beta_{10} \) are set identified by \(\gamma_{10} \in \Gamma_1, \beta_{10} \in B_1 \), and \(\beta_{20} \) is point identified by \(\beta_{20} = E(X'X)^{-1} E(XY_2) \).

Note that an implication of Theorem 3 is that equation (15) has real roots whenever \(|\text{corr}(Z, \varepsilon_1 \varepsilon_2)| < |\text{corr}(Z, \varepsilon_2^2)| \), and \(\tau \) is defined as an upper bound on the ratio of these two correlations. The smaller the value of \(\tau \) is, the smaller will be the identified sets \(\Gamma_1 \) and \(B_1 \), and hence the tighter will be the bounds on \(\gamma_{10} \) and \(\beta_{10} \) given by Theorem 3. One can readily verify that the sets \(\Gamma_1 \) and \(B_1 \) collapse to points, corresponding to Theorem 1, when \(\tau = 0 \).

An obvious way to construct estimates based on Theorem 3 is to substitute \(W_j = Y_j - X' E(XX')^{-1} E(XY_j) \) into equation (15), replace all the expectations in the result with sample averages, and then solve for the two roots of the resulting quadratic equation given \(\tau \). These roots will then be consistent estimates of the boundary of the interval that brackets \(\gamma_{10} \).

To illustrate the size of the bounds implied by Theorem 3, consider the model

\[
Y_1 = \beta_{11} + X \beta_{12} + Y_2 \gamma_1 + \varepsilon_1, \quad \varepsilon_1 = U + e^X S_1
\]

(16)

\[
Y_2 = \beta_{21} + X \beta_{22} + \varepsilon_2, \quad \varepsilon_2 = U + e^{-X} S_2
\]

(17)

where \(X, U, S_1, \) and \(S_2 \) are independent standard normal scalars, \(Z = X \), and \(\beta_{11} = \beta_{12} = \beta_{21} = \beta_{22} = \gamma_1 = 1 \). A supplemental appendix to this paper includes a Monte Carlo analysis of the estimator using this design. It can be shown by tedious but straightforward algebra that for this design, equation (15) reduces to

\[
1 - \frac{12 + 12e^2 - e^4 + 3e^8}{2 + 4e^2 - e^4 + 3e^8} \tau^2 + 2 \left(\frac{5 + 7e^2 - e^4 + 3e^8}{2 + 4e^2 - e^4 + 3e^8} \tau^2 - 1 \right) \gamma_{10} + \left(1 - \tau^2 \right) \gamma_{10}^2 = 0
\]

(18)
Evaluating these equations for various values of \(\tau \) shows that the identified region \(\Gamma_1 \) for \(\gamma_{10} \) is quite narrow unless \(\tau \) is very close to its upper bound of one. In this design, the true value is \(\gamma_{10} = 1 \), which equals the identified region when \(\tau = 0 \). For \(\tau = .1 \) the identified interval based on equation (18) is [0.995, 1.005] and for \(\tau = .5 \) the identified interval is [0.973, 1.023]. Even for the loose bound on \(\text{cov}(Z, \varepsilon_1 \varepsilon_2) \) given by \(\tau = .9 \) the identified interval is still the rather narrow range [0.892, 1.084].

6 Nonlinear Model Extensions

This section considers extending the model to allow for nonlinear functions of \(X \). Details regarding regularity conditions and limiting distributions for associated estimators are not provided, because they are immediate applications of existing estimators once the required identifying moments are established.

6.1 Semiparametric Identification

Consider the model

\[
Y_1 = g_1(X) + Y_2 \gamma_{10} + \varepsilon_1 \\
Y_2 = g_2(X) + Y_1 \gamma_{20} + \varepsilon_2
\]

where the functions \(g_j(X) \) are unknown. In this simultaneous system, each equation is partly linear as in Robinson (1988).

ASSUMPTION B1: \(Y = (Y_1, Y_2)' \), where \(Y_1 \) and \(Y_2 \) are random variables. For some random vector \(X \), the functions \(E(Y \mid X) \) and \(E(YY' \mid X) \) are finite and identified from data.

Given a sample of observations of \(Y \) and \(X \), the conditional expectations in Assumption B1 could be estimated by nonparametric regressions, and so would be identified. These conditional expectations are the reduced form of the underlying structural model.

ASSUMPTION B2: \(E(\varepsilon_1 \mid X) = 0, E(\varepsilon_2 \mid X) = 0 \), and for some random vector \(Z \), \(\text{cov}(Z, \varepsilon_1 \varepsilon_2) = 0 \).

As before, the elements of \(Z \) can all be elements of \(X \) also, so no outside instruments are required. No exclusion assumptions are imposed, so all of the same regressors \(X \) that appear in \(g_1 \) can also appear in \(g_2 \), and vice versa. If \(\varepsilon_j = Ua_j + V_j \), where \(U, V_1, \text{ and } V_2 \) are mutually uncorrelated (conditioning on \(Z) \), \(\text{cov}(Z, \varepsilon_1 \varepsilon_2) = 0 \) if \(Z \) is uncorrelated with \(U^2 \).

ASSUMPTION B3: Define \(W_j = Y_j - E(Y_j \mid X) \) for \(j = 1, 2 \). The matrix \(\Phi_W \), defined as the matrix with columns given by the vectors \(\text{cov}(Z, W_j^2) \) and \(\text{cov}(Z, W_2^2) \), has rank two.

Assumption B3 is analogous to Assumption A3, but employs a different definition of \(W_j \). These definitions will coincide if the conditional expectation of \(Y \) given \(X \) is linear in \(X \).
Lemma 1 continues to hold with this new definition of W_j and hence of Φ_W, and more generally heteroskedasticity of W_1 and W_2 implies heteroskedasticity of ε.

THEOREM 4: Let equations (19) and (20) hold. If Assumptions B1 and B2 hold, $\text{cov}(Z, \varepsilon^2) \neq 0$, and $\gamma_{20} = 0$ then the structural parameter γ_{10}, the functions $g_1(X)$ and $g_2(X)$, and the variance of ε are identified. If Assumptions B1, B2, B3, and A4 hold then the structural parameters γ_{10} and γ_{20}, the functions $g_1(X)$ and $g_2(X)$, and the variance of ε are identified.

An immediate corollary of Theorem 4 is that the partly linear simultaneous system

\[
Y_1 = h_1(X_1) + X_2\beta_{10} + Y_2\gamma_{10} + \varepsilon_1 \tag{21}
\]
\[
Y_2 = h_2(X_1) + X_2\beta_{20} + Y_1\gamma_{20} + \varepsilon_2 \tag{22}
\]

where $X = (X_1, X_2)$ will also be identified, since $g_j(X) = h_j(X_1) + X_2\beta_{j0}$ is identified.

6.2 Nonlinear Model Estimation

Consider the model

\[
Y_1 = G_1(X, \beta_0) + Y_2\gamma_{10} + \varepsilon_1 \tag{23}
\]
\[
Y_2 = G_2(X, \beta_0) + Y_1\gamma_{20} + \varepsilon_2 \tag{24}
\]

where the functions $G_j(X, \beta_0)$ are known and the parameter vector β_0, which could include γ_1 and γ_2, is unknown. This generalizes equations (3) and (4) by allowing nonlinear functions of X. Letting $g_j(X) = G_j(X, \beta_0)$, Theorem 4 provides sufficient conditions for identification of this model, assuming that β_0 is identified given identification of the functions $g_j(X) = G_j(X, \beta_0)$. The immediate analog to Corollary 3 is then that β_0, γ_{10}, γ_{20}, and μ_0 can be estimated from the moment conditions

\[
E[(Y_1 - G_1(X, \beta_0) - Y_2\gamma_{10}) | X] = 0
\]
\[
E[(Y_2 - G_2(X, \beta_0) - Y_1\gamma_{20}) | X] = 0
\]
\[
E(Z - \mu_0) = 0
\]
\[
E[(Z - \mu_0)(Y_1 - G_1(X, \beta_0) - Y_2\gamma_{10})(Y_2 - G_2(X, \beta_0) - Y_1\gamma_{20})] = 0
\]

For efficient estimation in this case where some of the moments are conditional see, e.g., Chamberlain (1987), Newey (1993), and Kitamura, Tripathi, and Ahn (2003). Ordinary GMM can be used for estimation by replacing the first two conditional moments above with unconditional moments

\[
E[\zeta(Y_1 - G_1(X, \beta_0) - Y_2\gamma_{10})] = 0
\]
\[
E[\zeta(Y_2 - G_2(X, \beta_0) - Y_1\gamma_{20})] = 0
\]

For some chosen vector valued function $\zeta(X)$. Asymptotic efficiency may be obtained by using an estimated optimal $\zeta(X)$; see, e.g., Newey (1993) for details.

As in the linear model, some of these moments may be weak, which would suggest the use of weak instrument limiting distributions in the GMM estimation. See Stock, Wright, and Yogo (2002) for a survey of applicable weak moment procedures.
6.3 Semiparametric Estimation

Consider estimation of the partly linear system of equations (19) and (20), where the functions \(g_j(X) \) are not parameterized. We now have identification based on the moments

\[
E[Y_1 - g_1(X) - Y_2 \gamma_{10} | X] = 0
\]
\[
E[Y_2 - g_2(X) - Y_1 \gamma_{20} | X] = 0
\]
\[
E[Z - \mu_0 | X] = 0
\]
\[
E[\left(Z - \mu_0 \right) (Y_1 - g_1(X) - Y_2 \gamma_{10})(Y_2 - g_2(X) - Y_1 \gamma_{20})] = 0
\]

These are conditional moments containing unknown parameters and unknown functions, and so general estimators for these types of models may be applied. Examples include Ai and Chen (2003), Otsu (2003), and Newey and Powell (2003).

Alternatively, the following estimation procedure could be used, analogous to the numerically simple estimator for linear simultaneous models described earlier. Assume we have \(n \) independent, identically distributed observations. Let \(\hat{H}_j(X) \) be a uniformly consistent estimator of \(H_j(X) = E(Y_j | X) \), e.g., a kernel or local polynomial nonparametric regression of \(Y_j \) on \(X \). Now, as defined by Assumption B3, \(W_j = Y_j - H_j(X) \), so let \(\hat{W}_{ji} = Y_{ji} - \hat{H}_j(X_i) \) for each observation \(i \). Next, let \(\hat{C}_{jkh} \) be the sample covariance of \(\hat{W}_j \hat{W}_k \) with \(Z_h \), where \(Z_h \) is the \(h \)'th element of the vector \(Z \). Assume \(Z \) has a total of \(K \) elements. Based on equation (27), estimate \(\gamma_1 \) and \(\gamma_2 \) by

\[
(\hat{\gamma}_1, \hat{\gamma}_2) = \arg \min_{(\gamma_1, \gamma_2) \in \Gamma} \sum_{h=1}^{K} \left((1 + \gamma_1 \gamma_2) \hat{C}_{12h} - \gamma_1 \hat{C}_{22h} - \gamma_2 \hat{C}_{11h} \right)^2
\]

where \(\Gamma \) is a compact set satisfying Assumption A4. The above estimator for \(\gamma_1 \) and \(\gamma_2 \) is numerically equivalent to an ordinary nonlinear least squares regression over \(K \) observations of data, where \(K \) is the number of elements of \(Z \). In a triangular system, that is, with \(\gamma_2 = 0 \), this step reduces to a linear regression for estimating \(\gamma_1 \). Finally, estimates of the functions \(g_1(X) \) and \(g_2(X) \) are obtained by nonparametrically regressing \(\hat{Y}_1 - \hat{Y}_2 \hat{\gamma}_1 \) and \(\hat{Y}_2 - \hat{Y}_1 \hat{\gamma}_2 \) on \(X \), respectively. The consistency of this procedure follows from the consistency of each step, which in turn is based on the steps of the identification proof of Theorem 4.

This estimator of \(\hat{\gamma}_1 \) and \(\hat{\gamma}_2 \) is an example of a semiparametric estimator with nonparametric plug-ins. See, e.g., section 8 of Newey and McFadden (1994). Unlike Ai and Chen (2003), this numerically simple procedure might not yield efficient estimates of \(\hat{\gamma}_1 \) and \(\hat{\gamma}_2 \). However, assuming that \(\hat{\gamma}_1 \) and \(\hat{\gamma}_2 \) converge at a faster rate than nonparametric regressions, the limiting distributions of the estimates of the functions \(g_1(X) \) and \(g_2(X) \) will be the same as for ordinary nonparametric regressions of \(Y_1 - Y_2 \gamma_{10} \) and \(Y_2 - Y_1 \gamma_{20} \) on \(X \), respectively.

Further extension to estimation of the partly linear system of equations (21) and (22) is immediate. For this model the Assumption B2 moments \(E(\varepsilon_1 | X) = 0 \), \(E(\varepsilon_2 | X) = 0 \), and \(\text{cov}(Z, \varepsilon_1 \varepsilon_2) = 0 \) are

\[
E[Y_1 - h_1(X_1) - X_2 \beta_{10} - Y_2 \gamma_{10} | X] = 0
\]
\[
E[Y_2 - h_2(X_1) - X_2\beta_2 - Y_1\gamma_2 | X] = 0 \\
E[Z - \mu_0] = 0 \\
E[(Z - \mu_0) [Y_1 - h_1(X_1) - X_2\beta_2 - Y_2\gamma_1][Y_2 - h_2(X_1) - X_2\beta_2 - Y_1\gamma_2] = 0
\]

which could again be consistently estimated by the above described procedure, replacing the nonparametric regression steps with partly linear nonparametric regression estimators such as Robinson (1988), or by directly applying an estimator such as Ai and Chen (2003) to these moments.

7 Conclusions

This paper describes a new method of obtaining identification in mismeasured regressor models, triangular systems, simultaneous equation systems, and some partly linear semiparametric systems. The identification comes from observing a vector of variables \(Z\) (which can equal or be a subset of the vector of model regressors \(X\)) that are uncorrelated with the covariance of heteroskedastic errors. The existence of such a \(Z\) is shown to be a feature of many models in which error correlations are due to an unobserved common factor, including mismeasured regressor models. Associated two stage least squares and GMM estimators are provided.

The proposed estimators appear to work well in both a small Monte Carlo study (provided as a supplemental appendix to this paper) and in an empirical application. Citing working paper versions of the present paper, some papers by other researchers listed earlier include empirical applications of the proposed estimators, and find them to work well in practice.

Unlike ordinary instruments, identification is obtained even when all the elements of \(Z\) are also regressors in every model equation. However, \(Z\) shares many of the convenient features of instruments in ordinary two stage least squares models. As with ordinary instrument selection, given a set of possible choices for \(Z\), the estimators remain consistent if only a subset of the available choices are used, so variables that one is unsure about can be safely excluded from the \(Z\) vector, with the only loss being efficiency. Similarly, as with ordinary instruments, if some variable \(\bar{Z}\) satisfies the conditions to be an element of \(Z\), but is only observed with classical measurement error, then this mismeasured \(\bar{Z}\) can still be used as an element of \(Z\). If \(Z\) has more than two elements (or more than one element in a triangular system) then the model parameters are overidentified and standard tests of overidentifying restrictions, such as Hansen’s (1982) test, can be applied.

The identification here is based on higher moments, and so is likely to give noisier, less reliable estimates than identification based on standard exclusion restrictions, but may be useful in applications where traditional instruments are weak or nonexistent. This paper’s moments based on \(cov(Z, \epsilon_1\epsilon_2) = 0\) can be used along with traditional instruments to increase efficiency and provide testable overidentifying restrictions.

This paper also shows that bounds on estimated parameters can be obtained when the identifying assumption \(cov(Z, \epsilon_1\epsilon_2) = 0\) does not hold, provided that this covariance is not too large relative to the heteroskedasticity in the errors. In a numerical example these bounds appear to be quite narrow.
The identification scheme in the paper requires the endogenous regressors to appear additively in the model. A good direction for future research would be searching for ways to extend the identification method to allow for including the endogenous regressors nonlinearly. Perhaps it would be possible to replace linearity in endogenous regressors with local linearity, applying this paper’s methods and assumptions to a kernel weighted locally linear representation of the model.

It would also be worth considering whether additional moments for identification could be obtained by allowing for more general dependence between \(Z \) and \(\varepsilon_2 \) and corresponding zero higher moments. One simple example is to let the assumptions of Theorems 1 and 2 hold using \(Z/\varepsilon \) in place of \(Z \) for different functions \(\sigma \), such as higher moments of \(Z \), thereby providing additional instruments for estimation.

8 Appendix

PROOF OF THEOREM 1: Define \(W_j \) by equation (11) for \(j = 1, 2 \). These \(W_j \) are identified by construction. Using the Assumptions, substituting equations (6) and (7) for \(Y_1 \) and \(Y_2 \) in the definitions of \(W_1 \) and \(W_2 \) shows that \(W_1 = \varepsilon_1 + \varepsilon_2 \gamma_{10} \) and \(W_2 = \varepsilon_2 \), so \(\text{cov}(Z, \varepsilon_1 \varepsilon_2) = 0 \) is equivalent to \(\text{cov}[Z, (W_1 - \gamma_{10} W_2) W_2] = 0 \). Solving for \(\gamma_{10} \) shows that \(\gamma_{10} = \text{cov}(Z, W_1 W_2) / \text{cov}(Z, W_2^2) \). Given identification of \(\gamma_{10} \), the coefficients \(\beta_{10} \) and \(\beta_{20} \) are identified by \(\beta_{10} = E(XX')^{-1} E[X(Y_1 - Y_2 \gamma_{10})] \) and \(\beta_{20} = E(XX')^{-1} E(XY_2) \), which follow from \(E(X\varepsilon_j) = 0 \). Also, \(\varepsilon \) is identified by \(\varepsilon_1 = Y_1 - X' \beta_{10} - Y_2 \gamma_{10} \) and \(\varepsilon_2 = Y_2 - X' \beta_{20} \). Finally, to show equation (8), observe that \(\Psi_{ZX} \) simplifies to

\[
\Psi_{ZX} = \begin{pmatrix} E(XX') & E(XX') \beta_{20} \\ E(ZX\varepsilon_2) & E(ZX\varepsilon_2) \beta_{20} + \text{cov}(Z, \varepsilon_2^2) \end{pmatrix}
\]

which spans the same column space as

\[
\begin{pmatrix} E(XX') & 0 \\ E(ZX\varepsilon_2) & \text{cov}(Z, \varepsilon_2^2) \end{pmatrix}
\]

and so has rank equal to the number of columns, which makes \(\Psi_{ZX}^\top \Psi_{ZX} \) nonsingular. Also

\[
E \left(\begin{pmatrix} X \\ [Z - E(Z)] \varepsilon_2 \end{pmatrix} Y_1 \right) = \Psi_{ZX} \begin{pmatrix} \beta_{10} \\ \gamma_{10} \end{pmatrix} + \begin{pmatrix} 0 \\ \text{cov}(Z, \varepsilon_1 \varepsilon_2) \end{pmatrix}
\]

which then gives equation (8).

PROOF OF THEOREM 2: Substituting equations (9) and (10) for \(Y_1 \) and \(Y_2 \) in the definitions of \(W_1 \) and \(W_2 \) shows that

\[
W_1 = \frac{\varepsilon_1 + \varepsilon_2 \gamma_{10}}{1 - \gamma_{10} \gamma_{20}}, \quad W_2 = \frac{\varepsilon_2 + \varepsilon_1 \gamma_{20}}{1 - \gamma_{10} \gamma_{20}} \tag{25}
\]

and solving these equations for \(\varepsilon \) yields

\[
\varepsilon_1 = W_1 - \gamma_{10} W_2, \quad \varepsilon_2 = W_2 - \gamma_{20} W_1 \tag{26}
\]
Note that $\gamma_{10} \gamma_{20} \neq 1$ by Assumption A4. Using equation (26), the condition $\text{cov}(Z, \varepsilon_1 \varepsilon_2) = 0$ is equivalent to

$$\text{cov}[Z, (W_1 - \gamma_{10} W_2)(W_2 - \gamma_{20} W_1)] = 0$$

$$(1 + \gamma_{10} \gamma_{20}) \text{cov}(Z, W_1 W_2) - \gamma_{10} \text{cov}(Z, W_2^2) - \gamma_{20} \text{cov}(Z, W_1^2) = 0$$

(27)

Now $1 + \gamma_{10} \gamma_{20} \neq 0$, since otherwise it would follow from equation (27) that the rank of Φ_W is less than two. Define

$$\lambda_1 = \frac{\gamma_{10}}{1 + \gamma_{10} \gamma_{20}}, \quad \lambda_2 = \frac{\gamma_{20}}{1 + \gamma_{10} \gamma_{20}}$$

(28)

and $\lambda = (\lambda_1, \lambda_2)'$. We then have

$$\text{cov}(Z, W_1 W_2) = \lambda_1 \text{cov}(Z, W_2^2) + \lambda_2 \text{cov}(Z, W_1^2) = \Phi_W \lambda$$

(29)

so λ is identified by

$$\lambda = (\Phi_W' \Phi_W)^{-1} \Phi_W' \text{cov}(Z, W_1 W_2)$$

and $\Phi_W' \Phi_W$ is not singular because Φ_W is rank two. Solving equation (28) for γ_{10} gives

$$0 = \lambda_2 \gamma_{10}^2 - \gamma_{10} + \lambda_1$$

The above quadratic in γ_{10} has at most two roots, and for each root the corresponding value for γ_{20} is given by $\gamma_{20} = \gamma_{10} \lambda_2 / \lambda_1$. Let $(\gamma_{10}', \gamma_{20}')$ denote one of these solutions. It can be seen from

$$\lambda_1 = \left(\frac{1}{\gamma_{10}} + \gamma_{20} \right)^{-1}, \quad \lambda_2 = \left(\frac{1}{\gamma_{20}} + \gamma_{10} \right)^{-1}$$

that the other solution must be $(\gamma_{20}^{-1}, \gamma_{10}^{-1})$, since that yields the same values for λ_1 and λ_2. One of these solutions must be $(\gamma_{10}', \gamma_{20}')$, and by Assumption A4 the other solution is not an element of Γ, so $(\gamma_{10}, \gamma_{20})$ is identified. Note that the conditions required for the quadratic to have real rather than complex or imaginary roots are automatically satisfied, because $(\gamma_{10}, \gamma_{20})$ is real.

Given identification of γ_{10} and γ_{20}, the coefficients β_{10} and β_{20} are identified by $\beta_{10} = E(XX')^{-1} E[X(Y_1 - Y_2 \gamma_{10})]$ and $\beta_{20} = E(XX')^{-1} E[X(Y_2 - Y_1 \gamma_{20})]$, which follow from $E(X \varepsilon) = 0$. Finally ε is now identified by $\varepsilon_1 = Y_1 - X' \beta_{10} - Y_2 \gamma_{10}$ and $\varepsilon_2 = Y_2 - X' \beta_{20} - Y_1 \gamma_{20}$.

PROOF OF LEMMA 1: Equation (25) in Theorem 2 was derived using only Assumptions A1 and A2. Evaluating $\text{cov}(Z, W_2^2)$ using equation (25) and the assumption that $\text{cov}(Z, \varepsilon_1 \varepsilon_2) = 0$ gives, for each element Z_k of Z,

$$\begin{pmatrix}
\text{cov}(Z_k, W_2^2) \\
\text{cov}(Z_k, W_2^2)
\end{pmatrix} = \begin{pmatrix}
1 \\
1 - \gamma_{10} \gamma_{20}
\end{pmatrix} \begin{bmatrix}
1 & \gamma_{10}^2 \\
\gamma_{20} & 1
\end{bmatrix} \begin{pmatrix}
\text{cov}(Z_k, \varepsilon_1^2) \\
\text{cov}(Z_k, \varepsilon_2^2)
\end{pmatrix}$$

(30)

So Φ_W is rank two if and only if Φ_e is rank two and the matrix relating the two above is nonsingular, which requires $|\gamma_{10} \gamma_{20}| \neq 1$.

23
PROOF OF COROLLARY 1: Using equation (26) and following the same steps as the proof of Theorem 2, the condition \(E(Z\varepsilon_1\varepsilon_2) = 0 \) yields

\[
E(ZW_1W_2) = \lambda_1 E(ZW_2^2) + \lambda_2 E(ZW_1^2) = \Phi W \lambda
\]

instead of equation (29). This identifies \(\lambda \) and the rest of the proof is the same.

PROOF OF COROLLARY 2: \(\beta_{20} \) and \(\gamma_{20} \), and hence \(\varepsilon_2 \), are identified from the usual moments that permit two stage last squares estimation. Each \(W_j \) is identified as in Theorem 1, and by equation (25), \(\text{cov}(Z, \varepsilon_1\varepsilon_2) = 0 \) implies \(\text{cov}[Z, (W_1 - \gamma_{10}W_2)\varepsilon_2] = 0 \), which when solved for \(\gamma_{10} \) gives

\[
\gamma_{10} = \text{cov}(Z, W_1\varepsilon_2)/\text{cov}(Z, W_2\varepsilon_2)
\]

and \(\text{cov}(Z, W_2\varepsilon_2) = \text{cov}(Z, \varepsilon_2^2) \neq 0 \), so \(\gamma_{10} \) is identified. The rest of the proof is the same as the end of the proof of Theorem 2.

PROOF OF COROLLARIES 3 and 4: By equations (9) and (10), \(Q_1 = X\varepsilon_1, Q_2 = X\varepsilon_2 \) and \(Q_4 = (Z - \mu)\varepsilon_1\varepsilon_2 \), and \(E(Q_3) = 0 \) makes \(\mu = E(Z) \), so \(E(Q) = 0 \) is equivalent to \(E(X\varepsilon_1) = 0, E(X\varepsilon_2) = 0, \) and \(\text{cov}(Z, \varepsilon_1\varepsilon_2) = 0 \). It then follows from Theorem 2, or from Theorem 1 when \(\gamma_{20} = 0 \), that the only \(\theta \in \Theta \) that satisfies \(E\{Q(\theta,S)\} = 0 \) is \(\theta = \theta_0 \).

PROOF OF THEOREM 3: First observe that if \(\text{cov}(Z, \varepsilon_2^2) = 0 \), then this fact along with the other assumptions would imply that the conditions of Theorem 1 hold, giving point identification, which is a special case of the statement of Theorem 3. So for the remainder of the proof, assume the case in which \(\text{cov}(Z, \varepsilon_2^2) \neq 0 \). Note this means also that \(\text{var}(\varepsilon_2^2) \neq 0 \) and \(\text{var}(Z) \neq 0 \), because \(\text{var}(\varepsilon_2^2) = 0 \) or \(\text{var}(Z) = 0 \) would imply \(\text{cov}(Z, \varepsilon_2^2) = 0 \). These inequalities will ensure that the denominators in the fractions given below are nonzero.

By the definition of \(\tau \)

\[
\left[\frac{\text{corr}(\varepsilon_1\varepsilon_2, Z) / \text{corr}(W_2^2, Z)}{\frac{\text{cov}(\varepsilon_1\varepsilon_2, Z)^2}{\text{var}(\varepsilon_1\varepsilon_2)} \frac{\text{var}(W_2^2)}{\text{var}(Z)}} \right]^2 \leq \frac{\text{var}(\varepsilon_1\varepsilon_2)^2}{\text{var}(W_2^2)^2} \leq \tau^2
\]

Now by Assumption A1 and equation (11) \(\varepsilon_1 = W_1 - W_2\gamma_{10} \) and \(W_2 = \varepsilon_2 \) so

\[
\left[\frac{\text{cov}(W_1W_2 - W_2^2\gamma_{10}, Z)}{\text{cov}(W_2^2, Z)^2} \right]^2 \leq \frac{\text{var}(W_1W_2 - W_2^2\gamma_{10})}{\text{var}(W_2^2)^2} \tau^2
\]

\[
\left[\frac{\text{cov}(W_1W_2, Z) - \text{cov}(W_2^2, Z)\gamma_{10}}{\text{cov}(W_2^2, Z)^2} \right]^2 \leq \frac{\text{var}(W_1W_2) - 2\text{cov}(W_1W_2, W_2^2\gamma_{10}) + \text{var}(W_2^2\gamma_{10})}{\text{var}(W_2^2)^2} \tau^2
\]
\[
\frac{\text{cov} (W_1W_2, Z)^2}{\text{cov} (W_2, Z)^2} - 2\frac{\text{cov} (W_1W_2, Z) \text{cov} (W_2^2, Z) \gamma_{10} + \left[\text{cov} (W_2^2, Z)\right]^2 \gamma_{10}^2}{\frac{\text{var} (W_1W_2)}{\text{var} (W_2^2)}} + \frac{\text{var} (W_1W_2)}{\text{var} (W_2^2)} \gamma_{10}^2 + \frac{\text{var} (W_1W_2)}{\text{var} (W_2^2)} \gamma_{10}^2 \tau^2 - 2\frac{\text{cov} (W_1W_2, W_2^2) \gamma_{10} + \gamma_{10}^2}{\text{var} (W_2^2)} \tau^2 \gamma_{10} + \tau^2 \gamma_{10}^2
\]
and moving all the terms to the left gives
\[
\frac{\text{cov} (W_1W_2, Z)^2}{\text{cov} (W_2, Z)^2} - \frac{\text{var} (W_1W_2)}{\text{var} (W_2^2)} \tau^2 + 2\left[\frac{\text{cov} (W_1W_2, W_2^2)}{\text{var} (W_2^2)} \tau^2 - \frac{\text{cov} (W_1W_2, Z)}{\text{cov} (W_2^2, Z)} \right] \gamma_{10} + (1 - \tau^2) \gamma_{10}^2 \leq 0.
\]

For 0 \leq \tau < 1, the coefficient of \(\gamma_{10}^2 \) is positive, so this inequality holds for all \(\gamma_1 \) that lie between the roots of the corresponding equality given by equation (15).

Proof of Theorem 4: Like Theorem 1, substituting equations (19) and (20) for \(Y_1 \) and \(Y_2 \) in the Assumption B3 definitions of \(W_1 \) and \(W_2 \) shows that equations (25) and (26) hold in this model. Identification of \(\gamma_{10} \) and \(\gamma_{20} \) then follows exactly as in the Proof of Theorem 1. Given identification of \(\gamma_{10} \) and \(\gamma_{20} \), the functions \(g_1(X) \) and \(g_2(X) \) are identified by \(g_1(X) = E(Y_1 | X) - E(Y_2 | X)\gamma_{10} \) and \(g_2(X) = E(Y_2 | X) - E(Y_1 | X)\gamma_{20} \), both of which follow from \(E(\varepsilon_j | X) = 0 \). Finally \(\varepsilon \) is now identified by \(\varepsilon_1 = Y_1 - g_1(X) - Y_2 \gamma_{10} \) and \(\varepsilon_2 = Y_2 - g_2(X) - Y_1 \gamma_{20} \).

References

Table 1. Engel Curve Estimates

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th>TSLS 1</th>
<th>TSLS 2</th>
<th>TSLS 3</th>
<th>GMM 1</th>
<th>GMM 2</th>
<th>GMM 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{11}</td>
<td>0.361</td>
<td>0.336</td>
<td>0.318</td>
<td>0.336</td>
<td>0.336</td>
<td>0.332</td>
<td>0.337</td>
</tr>
<tr>
<td></td>
<td>(.0056)</td>
<td>(.012)</td>
<td>(.035)</td>
<td>(.011)</td>
<td>(.012)</td>
<td>(.028)</td>
<td>(.011)</td>
</tr>
<tr>
<td>γ_{1}</td>
<td>-0.127</td>
<td>-0.086</td>
<td>-0.055</td>
<td>-0.086</td>
<td>-0.086</td>
<td>-0.078</td>
<td>-0.087</td>
</tr>
<tr>
<td></td>
<td>(.0083)</td>
<td>(.020)</td>
<td>(.058)</td>
<td>(.018)</td>
<td>(.020)</td>
<td>(.047)</td>
<td>(.018)</td>
</tr>
<tr>
<td>χ^2</td>
<td>18.8</td>
<td>17.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.f.</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.065</td>
<td>0.125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: OLS is an ordinary least squares regression of food share Y_1 on household characteristics X and log total expenditures Y_2. TSLS 1 is this regression estimated using two stage least squares with log real income as an ordinary external instrument. TSLS 2 is this paper’s heteroskedasticity based estimator, equation (14), which uses $(Z - \overline{Z})\hat{\epsilon}_2$ as instruments, where Z is all the regressors X except the constant. TSLS 3 uses both $(Z - \overline{Z})\hat{\epsilon}_2$ and the outside variable log real income as instruments. GMM 1, GMM 2, and GMM 3 are the same three models estimated by efficient GMM, based on Corollary 4.

Reported above are $\beta_{11} = \overline{X}'\beta$, which is the Engel curve intercept at the mean of the X regressors, and γ_{1}, which is the Engel curve slope coefficient of Y_2. Standard errors are in parentheses. Also reported is the Hansen (1982) specification test chi squared statistic for the overidentified GMM models 2 and 3, along with its degrees of freedom and p-value.
Using Heteroskedasticity to Identify and Estimate Mismeasured and Endogenous Regressor Models - Supplemental Appendix

Arthur Lewbel* Boston College

December 2010

Abstract

This supplemental appendix to the paper contains a Monte Carlo analysis of the proposed estimators.

Monte Carlo simulations draw data from the reduced form of the structural model

\[Y_1 = \beta_{11} + X\beta_{12} + Y_2\gamma_1 + \varepsilon_1, \quad \varepsilon_1 = U + e^{X'}S_1 \] \hspace{1cm} (1)

\[Y_2 = \beta_{21} + X\beta_{22} + Y_1\gamma_2 + \varepsilon_2, \quad \varepsilon_2 = U + e^{-X'S_2} \] \hspace{1cm} (2)

where \(X, U, S_1, \text{ and } S_2 \) are independent standard normal scalars and \(\beta_{11} = \beta_{12} = \beta_{21} = \beta_{22} = \gamma_1 = 1 \). The triangular design sets \(\gamma_2 = 0 \) and \(Z = X \). The fully simultaneous design sets \(\gamma_2 = -.5 \) and \(Z = (X, X^2) \). With these choices of \(Z \) the model parameters in each design are exactly identified by Theorems 1 and 2. The parameters in equation (1) for the triangular design, and all of the parameters in both equations in the simultaneous design, are not identified using traditional exclusion assumptions. Table 1 reports results of 10,000 simulations of each design, with sample size \(n = 500 \).

The triangular design is estimated using the two stage least squares estimator

\[
\begin{align*}
\hat{\beta}_2 &= \overline{XX'}^{-1}\overline{XY}_2, \\
\hat{\varepsilon}_2 &= Y_2 - X'\hat{\beta}_2
\end{align*}
\]

\[
\begin{pmatrix}
\hat{\beta}_1 \\
\hat{\gamma}_1
\end{pmatrix} = \left(\hat{\Psi}_{ZX}^{-1}\hat{\Psi}_{ZZ}^{-1}\hat{\Psi}_{XZ}^{-1}\right)^{-1}\hat{\Psi}_{ZX}^{-1}\hat{\Psi}_{ZZ}^{-1} \begin{pmatrix}
\overline{XY}_1 \\
(Z - \overline{Z})\hat{\varepsilon}_2Y_1
\end{pmatrix}
\]

as described in the paper, which is numerically identical to GMM because the model is exactly identified. The simultaneous system design is estimated using the GMM estimator based on

*Arthur Lewbel, Department of Economics, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA, 02467, USA. (617)-552-3678, lewbel@bc.edu, http://www2.bc.edu/~lewbel/
Corollary 3 in the paper. Ignoring Assumption A4, no inequality constraints on the parameters were imposed on the estimates, though for GMM the true values of the parameters were used as starting values for the optimizing iterations in each simulation.

The triangular model estimates are quite accurate, with less than one percent mean bias and root mean squared errors under .275. The simultaneous system parameters have biases of a few percent, but much larger root mean squared errors. These are largely due to a very small number of extreme estimates, as can be seen by median absolute errors that are only modestly larger than in the triangular model case, and virtually the same interquartile ranges.

Table 1. Simulation Results

<table>
<thead>
<tr>
<th>TRUE MEAN SD LQ MED UQ RMSE MAE MDAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{11} 1.00 1.00 .134 .915 1.00 1.09 .134 .105 .087</td>
</tr>
<tr>
<td>β_{12} 1.00 1.01 .273 .835 1.00 1.17 .273 .209 .168</td>
</tr>
<tr>
<td>γ_1 1.00 .999 .036 .980 1.00 1.02 .036 .026 .019</td>
</tr>
<tr>
<td>β_{21} 1.00 1.00 .129 .917 1.00 1.08 .129 .102 .084</td>
</tr>
<tr>
<td>β_{22} 1.00 1.00 .275 .830 .996 1.17 .275 .209 .168</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRUE MEAN SD LQ MED UQ RMSE MAE MDAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{11} 1.00 1.03 2.75 .918 1.00 1.09 2.75 .130 .085</td>
</tr>
<tr>
<td>β_{12} 1.00 .999 .667 .833 1.00 1.17 .667 .218 .170</td>
</tr>
<tr>
<td>γ_1 1.00 1.01 1.26 .974 .999 1.02 1.26 .047 .025</td>
</tr>
<tr>
<td>β_{21} 1.00 1.02 3.55 .913 1.00 1.09 3.55 .162 .090</td>
</tr>
<tr>
<td>β_{22} 1.00 1.05 6.53 .830 .998 1.17 6.53 .299 .172</td>
</tr>
<tr>
<td>γ_2 .500 .504 1.63 .527 .501 .477 1.63 .059 .025</td>
</tr>
</tbody>
</table>

Notes: The reported statistics are as follows. TRUE is the true value of the parameter, MEAN and SD are the mean and standard deviation of the estimates across the simulations. LQ, MED, and UQ are the 25% (lower) 50% (median) and 75% (upper) quartiles. RMSE, MAE, and MDAE are the root mean squared error, mean absolute error and median absolute error of the estimates.