Uniqueness of User Equilibrium in Transportation Networks with Heterogeneous Commuters

Konishi, Hideo. “Uniqueness of User Equilibrium in Transportation Networks with Heterogeneous Commuters”. Boston College Working Papers in Economics 494, 2001.

Abstract

This paper discusses uniqueness and efficiency of user equilibrium in transportation networks with heterogeneous commuters. Daganzo (1983, Transportation Science) proved the uniqueness of (stochastic) user equilibrium when commuters have heterogeneous tastes over possible paths but identical disutility functions from time costs. We first show, by example, that his result may not apply in general networks if disutility functions are allowed to differ. However, for "simple" transportation networks, we can show that user equilibrium is always unique and weakly Pareto efficient (cf. the Braess example) for a general class of utility functions. We investigate if this result applies to more general networks. We also show that user equilibrium is unique in a dynamic bottleneck model with a simple network. We discuss an interesting relationship between the following two problems: the existence of user equilibrium in a finite model and the uniqueness of user equilibrium in a continuum model. In the appendix, we also provide a proof of a slightly generalized version of Daganzo's theorem.