Magnetic Resonance Force Microscopy Using Nanotubes and Nanowires
Kwasnik, Katherine. “Magnetic Resonance Force Microscopy Using Nanotubes and Nanowires”, Boston College, 2004. http://hdl.handle.net/2345/478.
Abstract
Magnetic resonance force microscope (MRFM) is a relatively new form of microscopy, which provides very high-resolution images in three dimensions (3D). Further development of this microscope would provide a great instrument that would further many areas of research, including physics, material science, and biology. This research project aims to explore the possibilities of making a MRFM more sensitive by using carbon nanotubes or zinc oxide nanowires as cantilevers, making the resolution much higher and the scans accurate to a much smaller scale. The Magnetic resonance force microscopy is a cross between a magnetic resonance microscope (MFM) and atomic force microscopy (AFM). It combines Magnetic Resonance Imaging (MRI) technology with scanning probe microscopy to create an apparatus that can scan a surface and obtain images somewhat like those obtained by current MRI technology but on a much smaller scale. These images can be put back together to create a 3D image of the material.