Efficacy of Diet Therapies in the Treatment of Neurological and Neurodegenerative Diseases

Author: John G. Mantis

Persistent link: http://hdl.handle.net/2345/1330

This work is posted on eScholarship@BC, Boston College University Libraries.

Boston College Electronic Thesis or Dissertation, 2010

Copyright is held by the author, with all rights reserved, unless otherwise noted.
Boston College

The Graduate School of Arts and Sciences

Department of Biology

EFFICACY OF DIET THERAPIES IN THE TREATMENT OF
NEUROLOGICAL AND NEURODEGENERATIVE DISEASES

a dissertation

by

JOHN G. MANTIS

submitted in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
May 2010
ABSTRACT

Epilepsy is a prevalent disabling chronic and socially isolating neurological disorder that involves recurrent abnormal discharges of neurons. Despite seizures afflicting about 10% of people worldwide, antiepileptic drugs (AEDs) are largely unable to manage seizures in many persons with epilepsy. As an alternative to AEDs, dietary therapies possess a broad therapeutic potential in both humans and animals models of various neurological and neurodegenerative disease etiologies. My research focus was to identify the therapeutic efficacy and potential mechanism(s) of action of calorie restriction (CR) and the ketogenic diet (KD) in both the epileptic EL mouse model and the Mecp2 308/y mouse model of Rett syndrome. My findings indicate that both the KD and CR can reduce seizure susceptibility in EL mice, a natural model for multifactorial idiopathic generalized epilepsy. CR and circulating glucose and ketone levels significantly influence the therapeutic efficacy of the KD. A concurrent reduction in circulating plasma glucose levels and elevation in circulating plasma β-hydroxybutyrate levels was predicted to associate with the anticonvulsant effect of these diets in
EL mice. For the first time, I was able to show that a KD fed in unrestricted amount is able to reduce seizure threshold in EL mice. Interestingly, supplementation of calories in the form of carbohydrate in the water of calorie-restricted EL mice results in a diminished anticonvulsant efficacy of the KD. In my effort to elucidate the neuroprotective mechanism(s) associated with these changes in metabolite availability, I started investigating the complex alterations occurring in multiple integrated neural and metabolic processes. Furthermore, I showed that a restricted KD diet improves aspects of the behavioral abnormalities seen in Rett mice, in particular with respect to anxiety. Finally, for the first time, I provide a standardized protocol for the implementation of diet therapies in the management of an array of neurological and neurodegenerative diseases, which ultimately may help elucidate the complex neuroprotective mechanism(s) of CR and the KD. This research overall has provided a new understanding in the therapeutic efficacy of diets in epilepsy and Rett Syndrome.
DEDICATION

To my loving parents, Georgios and Stavroula Mantis, who have always supported me and believed in me throughout my life. They have sacrificed so much of themselves to give me the opportunities they never had. I thank them for helping me become the individual I am today --- the person, the student, the scientist, and most recently the new proud father of Georgios I. Mantis. I miss you every day during these past 14 years that we have lived apart. I deeply appreciate and thank you for all your love.

To my sister, Amilia Mantis, and my brother, Nikolao Mantis. You are both not only my siblings, but also my best friends. I look up to both of you for help and encouragement. I thank you both for your support, understanding, for checking up on me when I “had not call for a few days”, and for always caring for me.

To my wife, Parthena Sanxaridis Mantis. “Αγαπή μου”, thank you for your patience, understanding and unending love these past 12 years. You are someone I can always count on for advice and to brighten my day. I appreciate all our scientific conversations, and for always bringing my spirits up when I was overwhelmed. I love you with all my heart!
To my newborn son, Georgio I. Mantis. Words can’t describe how excited I am that you are part of my life, and sharing with you and your mother memories of endless happiness. Your giggles and cute smile make me forget all the bad days. I cannot wait to see what the future may hold for us!

To the Sanxaridis family, thank you all for making me feel part of your family and being there for me. Your support has been invaluable!

Lastly, I would like to end by thanking God for giving me the strength to attempt and achieve everything I have in my life. THANK YOU!!!
ACKNOWLEDGEMENTS

I would like to thank my mentor Dr. Thomas Seyfried, for his professional guidance and support. I would like to also thank my committee members, Dr. Charles Hoffman, Dr. Junona Moroianu, Dr. Daniel Kirschner, and Dr. Stephen Heinrichs for their guidance and help during this process. Furthermore, I would not have been able to complete my dissertation without the financial support of the Epilepsy Foundation and The Rett Syndrome Research Foundation (RSRF).

Finally, I would like to thank in particular the past and present members of the Seyfried lab, in particular: Dr. Purna Mukherjee, Dr. Mariana Todorova-Tran, Dr. Laura Abate, Dr. Rena Baek, Dr. Michael Kiebish, Karie Heinecke, and Linh Ta. I consider all of you my friends and I thank you all for being there for me throughout my graduate work. Also, I would like to express my warmest thanks to the diligent undergraduates who have worked with me all these years. Many thanks, to Christina Y. Kim, Nicole A. Centeno, Nicholas C. Zimick, Christie L. Fritz, and Jeremy Marsh for their help.

Many thanks to everyone in the Biology Department at Boston College, and especially all the current and past friends who have made my time here at Boston College a great experience and a fun working environment.
TABLE OF CONTENTS

PAGE

DEDICATION  i
ACKNOWLEDGEMENTS  iii
TABLE OF CONTENTS  iv
LIST OF TABLES  x
LIST OF FIGURES  xii
ABBREVIATIONS  xvi

CHAPTER ONE  1

INTRODUCTION  1

Epilepsy  1

Epileptic Animal Models  2

Diet Therapies for the Management of Epilepsy  5

Fasting and the Ketogenic Diet  6

CHAPTER TWO  18

Management of Multifactorial Epilepsy in Adult EL Mice with
Calorie Restriction and the Ketogenic Diet: Role of Glucose and
Ketone Bodies

INTRODUCTION  18

The influence of Calorie Restriction in the Management of
Idiopathic Epilepsy in Adult EL Mice
### MATERIALS AND METHODS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mice</td>
<td>20</td>
</tr>
<tr>
<td>Seizure Susceptibility and Seizure Testing</td>
<td>21</td>
</tr>
<tr>
<td>Seizure Phenotype</td>
<td>22</td>
</tr>
<tr>
<td>Diets</td>
<td>23</td>
</tr>
<tr>
<td>Pre-Trial Period</td>
<td>24</td>
</tr>
<tr>
<td>Dietary Treatment</td>
<td>24</td>
</tr>
<tr>
<td>Measurement of Plasma Glucose and (\beta)-Hydroxybutyrate</td>
<td>26</td>
</tr>
<tr>
<td>Statistical Analysis</td>
<td>27</td>
</tr>
</tbody>
</table>

### RESULTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet Composition and Tolerance</td>
<td>28</td>
</tr>
<tr>
<td>Influence of Calorie Restriction on Body Weight</td>
<td>29</td>
</tr>
<tr>
<td>Influence of Diets on Seizure Susceptibility in Adult EL Mice</td>
<td>29</td>
</tr>
<tr>
<td>Influence of Diets on Plasma Glucose and (\beta)-Hydroxybutyrate Levels</td>
<td>30</td>
</tr>
<tr>
<td>Statistical Relationships Among Variables</td>
<td>31</td>
</tr>
</tbody>
</table>

### DISCUSSION

| Chapter Three

Glucose Reduces the Antiepileptic and Anticonvulsant Effects of the Ketogenic Diet in EL mice

INTRODUCTION

The influence of KetoCal® in the Management of Idiopathic Epilepsy in Young Adult EL Mice

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIALS AND METHODS</td>
<td>56</td>
</tr>
</tbody>
</table>
CHAPTER FIVE

Implementation of Calorically Restricted Diets for the Management of Neurological and Neurodegenerative Diseases in Murine Models

INTRODUCTION 121

Influence of Diet Therapies on Disease Phenotype 121

ISSUES WITH DIET IMPLEMENTATION 124

A. A Comparative Analysis of CR to Other Dietary Energy Restriction Regimens 126

B. Importance of Body Weight as an Independent Measure During CR 130
C. Influence of Diet on Rodent Metabolism 136
D. Measurement of Metabolite Biomarkers 140

GUIDELINES FOR IMPLEMENTING CALORICALLY RESTRICTED DIETS FOR THE MANAGEMENT OF NEUROLOGICAL AND NEURODEGENERATIVE DISEASES

DISCUSSION 146

CHAPTER SIX 165

Biochemical and Molecular Correlatives in the Management of Seizure Susceptibility in EL mice using the KD and CR

INTRODUCTION 165
MATERIALS AND METHODS 167
Mice 167
Mouse Tissue 168
Antibodies, Primers, and Reagents 168
Semi-Quantitative RT-PCR 169
Western Blot Analysis 170
Statistical Analysis 172

RESULTS 172
Neuroprotective Effects of CR and the KD by Modulating Brain Glutamic Acid Decarboxylase Levels 172
Influence of CR and the KD in the Expression of MCT1 and GLUT1 174
Influence of CR and the KD in Neuroinflammation 175

DISCUSSION 175
CHAPTER SEVEN

CONCLUSION

APPENDIX

A. Publications Related to Dissertation
   A. Other Publications
      A. Abstracts
      B. Sequencing Analysis of GluR4 in EL mice
      C. Assay for the Spectrophotometric Measurement of β-Hydroxybutyrate (D-3-hydroxybutyrate)
      D. Analyses of Primer Cycle Optimization
      E. Detection of Western Blot Linearity

REFERENCES
1. Animal Models of the Ketogenic Diet: Observations and Clinical Correlates

2. Severity Scores for Handling Induced Seizures in EL mice

3. Composition (%) of the Standard Diet and Various Ketogenic Diets

4. Pearson Bivariate Correlation of Body Weight, Food Intake, Plasma Glucose Levels, Plasma $\beta$-hydroxybutyrate Levels, and Seizure Susceptibility in Adult EL Mice

5. Binary Logistic Regression Analysis of the Maximum Likelihood Estimates Between Plasma Glucose, and Seizure Susceptibility in Adult EL Mice Fed Either the SD or KD

6. Mean Light-Dark Compartment Transitions

7. Mean Walking Time on the Bar

8. Performance of MeCP2 Mice in the Open-Field Task

9. Influence of Diet Therapies on Animal Models of Epilepsy

10. Influence of Diet Therapies on Neurodegenerative and Neurological Animal Models

11. Summary of the Definitions for Various Dietary Regimens
12. Influence of Known Drugs and Herbs on Rodent Metabolism and Body Weight 164

13. RT-PCR: Sequence of Primers and PCR Conditions 181
<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The Epileptic EL Mouse</td>
<td>13</td>
</tr>
<tr>
<td>2.</td>
<td>Influence of Fasting on Human Epileptic Seizures</td>
<td>15</td>
</tr>
<tr>
<td>3.</td>
<td>Influence of Diet on Body Weight in Adult EL Mice Fed the SD (A) or</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>the KD (B)</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Influence of Diet on Seizure Susceptibility in Adult EL Mice</td>
<td>41</td>
</tr>
<tr>
<td>5.</td>
<td>Influence of Diet on Plasma Glucose Levels in Adult EL Mice</td>
<td>43</td>
</tr>
<tr>
<td>6.</td>
<td>Influence of Diet on Plasma $\beta$-Hydroxybutyrate Levels in Adult</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>EL Mice</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Association of Plasma Glucose and Seizure Susceptibility in Adult</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>EL Mice</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Relationship of Circulating Glucose and Ketone Levels to Seizure</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Management in Epileptic EL Mice</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Influence of the High Fat Soybean-Oil KC Diet on Body Weight in</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Young Adult EL Mice</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Influence of the KC Diet on Seizure Susceptibility in Young Adult</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>EL Mice</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Comparative Analysis of the Influence of the KC Diet on the</td>
<td>76</td>
</tr>
</tbody>
</table>
Seizure Susceptibility in Young Adult EL Mice on Weeks 0 and 9 of the Study

12. Influence of the KC Diet on Plasma Glucose Levels in Young Adult EL Mice

13. Influence of the KC Diet on Plasma β-Hydroxybutyrate Levels in Young Adult EL Mice

14. Influence of Diet on Body Weight in MeCP2+/y and MeCP2308/y Mice

15. Influence of Diet on Wire Suspension Latency in MeCP2+/y and MeCP2308/y Mice

16. Influence of Diet on Incline Latency (Negative Geotaxis) in MeCP2+/y and MeCP2308/y Mice

17. Influence of Diet on Dark to Light Emergence in MeCP2+/y and MeCP2308/y Mice

18. Influence of Diet on Total Time in the Light in MeCP2+/y and MeCP2308/y Mice

19. Influence of Intermittent Fasting (IF) on Food Intake in VM Mice

20. Influence of CR and Re-feeding on Food Intake (A) and Body Weight (B) in C57BL/6J Mice
21. Influence of Re-feeding on Body Weight of Calorie Restricted Adult EL Mice Fed SD (A) or KD (B)  
22. Influence of Diet on Body Weight in Adult EL Mice Fed a SD (A) or the KD (B)  
23. Influence of Isocalorically Restricted Ketogenic and Standard Diets on Body Weight of Adult Mice  
24. Influence of CR on Body Weight in Juvenile EL Mice  
25. Relationship of Circulating Plasma Metabolites in the Management of Neurodegenerative and Neurological Diseases  
26. Influence of CR and the KD on GAD67 Protein Expression in the Cortex (A), and Hippocampus (B), of Adult EL Mice  
27. Influence of CR and the KC Diet on GAD67 Protein Expression in the Cortex of Young Adult EL Mice  
28. Comparative Analysis of GAD67 Protein Expression in the Cortex of Young and Old EL Mice  
29. Influence of CR and the KD on gad1 Gene Expression in the Cortex of Adult EL Mice  
30. Testing the Linear Range of Protein Detection in our Western Blot System  
31. Influence of CR and the KD on MCT1 Protein Expression in the Cortex (A), and Hippocampus (B), of Adult EL mice
32. Comparative Analysis of MCT1 Protein Expression in the Cortex of Young and Old EL Mice
33. Influence of CR and the KD on glut1 Gene Expression in the Cortex of Adult EL Mice
34. Influence of CR and the KD on Neuroinflammation
35. Perspectives on the Metabolic Management of Epilepsy Through a Dietary Reduction of Glucose and Elevation of Ketone Bodies
### Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AED</td>
<td>Antiepileptic Drug</td>
</tr>
<tr>
<td>ALS</td>
<td>Amyotrophic Lateral Sclerosis</td>
</tr>
<tr>
<td>β-OHB</td>
<td>beta-hydroxybutyrate</td>
</tr>
<tr>
<td>CR</td>
<td>Calorie Restriction</td>
</tr>
<tr>
<td>DER</td>
<td>Dietary Energy Restriction</td>
</tr>
<tr>
<td>DR</td>
<td>Dietary Restriction</td>
</tr>
<tr>
<td>ECS</td>
<td>Electroconvulsive Shock</td>
</tr>
<tr>
<td>EL</td>
<td>Epileptic “EL” mouse</td>
</tr>
<tr>
<td>FAA</td>
<td>Free Fatty Acids</td>
</tr>
<tr>
<td>FI</td>
<td>Food Intake</td>
</tr>
<tr>
<td>ddH2O</td>
<td>Double Distilled Water</td>
</tr>
<tr>
<td>GABA</td>
<td>gamma-aminobutyric acid</td>
</tr>
<tr>
<td>GAD</td>
<td>Glutamic Acid Decarboxylase</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde Phosphate Dehydrogenase</td>
</tr>
<tr>
<td>GluR4</td>
<td>Glutamate Receptor subunit 4</td>
</tr>
<tr>
<td>IF</td>
<td>Intermittent Fasting</td>
</tr>
<tr>
<td>IGE</td>
<td>Idiopathic Generalized Epilepsy</td>
</tr>
<tr>
<td>IGF</td>
<td>Insulin Growth Factor</td>
</tr>
<tr>
<td>KC</td>
<td>KetoCal®</td>
</tr>
<tr>
<td>KD</td>
<td>Ketogenic Diet</td>
</tr>
<tr>
<td>MCAO</td>
<td>Middle Cerebral Artery Occlusion</td>
</tr>
<tr>
<td>MES</td>
<td>Maximal Electroshock</td>
</tr>
<tr>
<td>NPY</td>
<td>Neuropeptide Y</td>
</tr>
<tr>
<td>PTZ</td>
<td>Pentylenetetrazol</td>
</tr>
<tr>
<td>QTL</td>
<td>Quantitative Trait Loci</td>
</tr>
<tr>
<td>R</td>
<td>Restricted</td>
</tr>
<tr>
<td>RTT</td>
<td>Rett Syndrome</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Diet</td>
</tr>
<tr>
<td>THC</td>
<td>Tetrahydrocannabinol</td>
</tr>
<tr>
<td>TZD</td>
<td>Thiazolidinedione</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>UCP1</td>
<td>Uncoupling Protein 1</td>
</tr>
<tr>
<td>UR</td>
<td>Unrestricted</td>
</tr>
</tbody>
</table>
CHAPTER ONE

INTRODUCTION

Epilepsy

Dating back to the ancient times, Greeks thought that epileptic seizures were caused by a supernatural power. Hippocrates later suggested that epilepsy could be a hereditary disease and not connected to witchcraft. Epilepsy is a disabling chronic and socially isolating neurological disorder involving recurrent abnormal discharges of neurons that produce epileptic seizures (Engel and Pedley, 1997; Johnston and Smith, 2008). With the exception of stroke, epilepsy is one of the most prevalent human neurological afflictions affecting about 1% of the US population (Hauser, 1997; Seyfried and Todorova, 1999). According to CDC data, worldwide, about 10% of people will experience a seizure sometime during their lifetime and about 3% will have had a diagnosis of epilepsy by age 80. Many persons with epilepsy manifest partial or generalized seizures without symptoms of brain abnormality or obvious structural pathology, such as idiopathic epilepsy (Baumann, 1982; Wolf, 1994; Engel and Pedley, 1997; Marini et al., 2004; Wolf, 2005). In idiopathic epilepsies, the genetic defect responsible for the spontaneous recurrence of epileptic seizures presumably produces a disturbance in neuronal response, transmission, or wiring that is continuously present between seizures (Wolf, 1994; Engel and Pedley, 1997; Wolf, 2005).
Interestingly enough only for a few idiopathic epilepsies have the genes been identified (Marini et al., 2004). Genetic heterogeneity, variable age of onset, and multifactorial inheritance has hindered progress in identifying the genetic and biochemical components responsible for the most common forms of human idiopathic generalized epilepsies (Tan et al., 2004; Todorova et al., 2006). While some idiopathic epilepsies are inherited as simple Mendelian traits, most are multifactorial where more than one gene together with environmental factors contribute to the disease phenotype (Berkovic, 1998; Todorova et al., 1999a; Todorova et al., 2006). In contrast to idiopathic epilepsy, symptomatic or acquired epilepsy often accompanies brain trauma, injury, or neurostructural defects. Generalized seizures tend to involve both cerebral hemispheres, whereas partial (also called local or focal) seizures are localized in one cerebral hemisphere (Hauser, 1982; Hauser, 1992). Furthermore, symptomatic epilepsies result from a variety of underlying pathological processes that might be localized or diffuse, unilateral or bilateral, static or progressive (Engel and Pedley, 1997; Johnston and Smith, 2008).

Epileptic Animal Models

The epileptic EL mouse: A natural model of human idiopathic generalized epilepsy.
Since the early half of the 20th century, a great array of animal models for seizures and epilepsy have played a fundamental role in our understanding of the physiology and behavioral changes associated with human epilepsy (Sarkisian, 2001). Many of the animal models of epilepsy range in diversity from drosophila to nonhuman primates, which can provide insight on the influence of environmental and genetic factors on the mechanisms of seizure onset (epileptogenicity), and anticonvulsant therapies (Putnam and Merritt, 1937; Engel, 1992; Engel and Pedley, 1997; Noebels, 1999, 2001; Sarkisian, 2001). Natural occurring models of epilepsy are especially important, since many of the non-natural models (e.g. PTZ-induced, kainic acid) draw mechanistic conclusions about epilepsy based on studies performed in normal and non epileptic brain, and the behavioral manifestations associated with each model can differ and look nothing like a human’s behavior (Stafstrom, 1999; Sarkisian, 2001). The epileptic EL mouse is a natural model for human multifactorial idiopathic epilepsy, and it was first discovered in 1954 in an outbred DDY mouse colony (Naruse and Kurokawa, 1992; Frankel et al., 1995a; Seyfried et al., 1999; Suzuki, 2004). EL mice experience complex partial seizures, seizures limited to one cerebral hemisphere, causing impairment of awareness or responsiveness, with secondary generalization similar to those seen in humans (Seyfried et al., 1999; Todorova et al., 1999a; Suzuki, 2004). Seizures in EL mice originate in or near the parietal lobe, quickly spread to the hippocampus and to other brain regions, and commence with the onset of sexual maturity (50-60 days of age) (Suzuki et
The seizures are accompanied by electroencephalographic (Di Pasquale et al.) abnormalities, vocalization, incontinence, loss of postural equilibrium, excessive salivation, and head, limb, and chewing automatisms (Suzuki, 1976; Suzuki and Nakamoto, 1977; Sato, 1985; Ishida et al., 1993; Nakano et al., 1994; Seyfried et al., 1999; Uchibori et al., 2002; Suzuki, 2004) (Figure 1). Epileptic seizures in EL mice also model Gowers' dictum, where each seizure increases the likelihood and severity of recurrent seizures (Gowers, 1901; Todorova et al., 1999a; Pitkanen and Sutula, 2002; Stafstrom and Sutula, 2005). Indeed, the EL mouse is the only known model of this hallmark of progressive epilepsy. Adult EL male mice also experience a sexual dysfunction similar to that described in men with temporal lobe epilepsy (Todorova et al., 1999b). EL mice express abnormalities of excitatory and inhibitory neurotransmission and develop a hippocampal gliosis with seizure progression (Flavin and Seyfried, 1994; Lambert et al., 1996; Fueta et al., 1998; Seyfried et al., 1999). A reactive gliosis that accompanies seizure progression in adult EL mice, and involves both astrocytes and microglia, is not associated with obvious hippocampal neuronal loss or synaptic rearrangements (e.g., mossy fiber sprouting) (Brigande et al., 1992; Drage et al., 2002; Murashima et al., 2005). Seizure susceptibility in EL mice can be controlled with antiepileptic drugs (Phenytoin and Phenobarbital) as well as with diet therapies to include the ketogenic diet and calorie restriction (Nagatomo et al., 1996; Todorova et al.,
The inheritance of seizure susceptibility in EL mice is complex and gene-environmental interactions play a significant role in the determination of seizure frequency and onset in EL mice (Frankel et al., 1995a; Frankel et al., 1995b; Poderycki et al., 1998; Todorova et al., 1999a; Marini et al., 2004; Tan et al., 2004; Todorova et al., 2006), as also seen in many persons with multifactorial idiopathic generalized epilepsy. Most recently, a novel Quantitative Trait Loci (QTL) analysis identified El-N as a potential QTL for age-dependent predisposition to seizures (Todorova et al., 2006). El-N was found on proximal Chromosome 9 in naïve EL mice that were tested for seizures once at 150 days of age (Todorova et al., 2006). All aforementioned findings suggest that the EL mouse is a good model for evaluating not only gene-environmental associations but also the effects of dietary therapies in the management of generalized idiopathic epilepsies.

Diet Therapies for the Management of Epilepsy

Despite intensive antiepileptic drug (AED) research and development, seizures remain unmanageable or refractory in many persons with epilepsy (Jallon, 1997; Freeman et al., 2000; Browne and Holmes, 2001). Epidemiological data indicate that 20-40% of the patients with newly diagnosed epilepsy will become refractory to treatment, due to both environmental (e.g. trauma, prior drug exposure) and genetic factors that predetermine the rate of
drug absorption, uptake, and metabolism (French, 2007). In addition, while many available AEDs provide seizure control to about 60-70% of all persons with epilepsy, their use is often associated with unanticipated and adverse side effects that diminish quality of life (Vermeulen and Aldenkamp, 1995; Porter et al., 1997; Gates, 2000; Browne and Holmes, 2001; Mattson, 2001; Wheless et al., 2001; Ortinski and Meador, 2004; Sheth, 2004; French, 2007; Kossoff et al., 2008). As an alternative to AEDs diet therapies have been shown to be effective in the management or control of epilepsy. Diet therapies for the control of epilepsy are as old as the disease itself, with references of their usage dating back to the time of the ancient Greeks and Romans (Temkin, 1971; Eadie and Bladin, 2001). Although, these early diet therapies were designed to rid the brain of toxic agents that were believed to underlie the development of epileptic seizures, the type or composition of antiepileptic diets (e.g. fasting, calorie restriction, ketogenic diet) have been adapted over time to reflect new perspectives on the etiology and management of epilepsy (Eadie and Bladin, 2001).

**Fasting and the Ketogenic Diet**

Fasting has long been recognized as an effective antiepileptic therapy for a broad range of seizure disorders (Lennox and Cobb, 1928; Lennox, 1960; Freeman et al., 2000; Greene et al., 2003; Seyfried et al., 2009b). Interestingly,
reference to fasting as a cure for epileptic seizures can be found as back as the biblical times (Mark 9:14-29) (Seyfried et al., 2009b). Using Conklin’s water-only diet, Lennox and colleagues, in 1928, demonstrated that although seizure incidence, or onset, actually increased over the first couple days of fasting, seizure susceptibility, or seizure frequency, was significantly decreased after three days in most patients (Lennox and Cobb, 1928; Lennox, 1960; Seyfried et al., 2004; Seyfried et al., 2009b) (Figure 2). This latter finding is of great importance in regard to brain energy metabolism and trying to decode the antiepileptic mechanism of action of fasting. Under normal physiological conditions brain cells derive most of their energy from glucose or glucose-derived metabolites (e.g. lactate, glycogen) (Clarke and Sokoloff, 1999; Bouzier-Sore et al., 2002; Kasischke et al., 2004). However, during fasting or other forms of dietary energy restriction (DER) cerebral energy metabolism gradually transitions from glucose to ketone utilization in about 3-4 days (Bhagavan, 2002; Seyfried et al., 2004; Seyfried et al., 2008a). This metabolic transition was also observed in Lennox’s patients, where blood glucose levels were reduced and blood ketone levels were increased (ketosis) upon fasting (Lennox, 1960). Amazingly, after fasting was terminated through food intake some of Lennox’s patients remained seizure free for extended periods, indicating individual variability for the anticonvulsant (a phenomenon where only seizures are reduced) and antiepileptic (a phenomenon where all or some aspects of epilepsy are affected) effects of fasting (Lennox, 1960; Seyfried et al., 2004; Seyfried et al., 2009b).
The return of seizures was often associated with a rise in blood glucose levels and a subsequent fall in blood ketone levels.

Although clinically effective in managing seizure disorders, fasting is impractical for the long-term seizure management due largely to issues of compliance (Seyfried et al., 2004). As mentioned earlier, fasting produces ketosis. It was originally thought that ketone bodies (β-hydroxybutyrate and acetoacetate) might play an important role in the antiepileptic effects of fasting (Wilder, 1921; Lennox, 1960). Consequently, high fat, low protein, low carbohydrate ketogenic diets (KD) were developed to mimic the physiological effects of fasting without causing severe food restriction or starvation (Peterman, 1928; Lennox, 1960; Freeman et al., 2000; Stafstrom and Bough, 2003). Although the KD significantly elevates circulating ketone body levels, subsequent studies have shown that ketone bodies alone were unable to account for the antiepileptic and anticonvulsant effects of the KD in humans or in animal epilepsy models (Appleton and DeVivo, 1974; Bough et al., 1999a; Likhodii et al., 2000; Thio et al., 2000; Todorova et al., 2000; Harney et al., 2002; Stafstrom and Bough, 2003; Mantis et al., 2004; Seyfried et al., 2004). An explanation for this may stem from the fact that brain ketone utilization depends on the plasma levels of ketones, glucose, and other metabolites (Nehlig and Pereira de Vasconcelos, 1993). Thus associations between plasma ketone levels and seizure protection may be masked (Seyfried et al., 2004).
Currently, although the KD is widely used clinically as an effective therapy in managing refractory seizures in children, recent findings suggest that the KD has therapeutic efficacy across a wide variety of ages (including adults), seizure types and severities, as well as different etiologies (Kossoff et al., 2002; Mady et al., 2003; Kossoff and McGrogan, 2005; Bodenant et al., 2008; Mosek et al., 2009). Additional evidence also supports the view that the KD improves the long-term outcome in children with refractory epilepsy (Freeman, 2001; Hemingway et al., 2001; Marsh et al., 2006). Moreover, from the reports of the diet’s efficacy worldwide in recent years, it appears that approximately half of patients receiving the KD will have ~50% reduction in their seizures, and ~33% of patients receiving the KD will have 90% reductions in their seizures (Hassan et al., 1999; Kankirawatana et al., 2001; Coppola et al., 2002; Klepper et al., 2002; Francois et al., 2003; Kim et al., 2004; Vaisleib et al., 2004).

Based on all aforementioned findings, a great interest is developing in the natural therapeutic potential of the ketogenic diet in the treatment of neurological disorders other than epilepsy, including Alzheimer’s and Parkinson’s disease (Gasior et al., 2006). Studies in these neurodegenerative disorders have led to the hypothesis that the ketogenic diet may not only provide symptomatic benefit, but could have beneficial disease-modifying activity applicable to a broad range of brain disorders characterized by the death of neurons (Gasior et al., 2006; Gasior et al., 2007). Interestingly, the KD is most effective in reducing seizure susceptibility in children when administered with fasting or under restricted
caloric intake (Freeman and Vining, 1999; Freeman et al., 2000; Freeman et al., 2007). Clinical studies have also shown that the anticonvulsant efficacy of the KD is associated with body weight and blood glucose reductions of about 10% (Livingston, 1972). Furthermore, patients who experience a rise in blood glucose levels, as in the case of those who gain weight on the KD or those who consume carbohydrates, the neuroprotective effect of the KD has have been shown to be ameliorated (Freeman et al., 2000; Freeman et al., 2007).

Adverse effects of the KD occur only when the diet is given in *ad libitum* or unrestricted amounts for a prolonged period of time (usually occurring after 4 weeks) (e.g. weight gain, hypercholesterolemia, diabetes, kidney stones, and cardiovascular disease) (Kang et al., 2004). Although these adverse effects are important for neurologists and pediatricians to recognize, only infrequently do they cause a discontinuation of the KD treatment in patients (Freeman et al., 2007). Early-onset adverse effects associated with the initiation of the KD are transient and include acidosis, hypoglycemia, gastrointestinal distress, dehydration, and lethargy (Ballaban-Gil, 2004; Freeman et al., 2007). Later adverse effects include dyslipidemia, kidney stones, and slowing of growth. Although cholesterol and lipids are shown to be affected by the diet, it is interesting to note that the lipid profiles of children maintained on the KD for greater than 6 years returned toward baseline (Kwiterovich et al., 2003). Kidney stones occur in 5% of children on the KD and are thought to be secondary to a combination of acidosis, urine acidification, hypercalciuria, and hypocitraturia.
From all these findings, it is clear that the success and safety of the KD are best achieved when administered to patients in restricted amounts by close supervision of an experienced medical team (the physician, dietician, or nurse).

Previous findings have shown the KD to have both an antiepileptic/anticonvulsant and antiepileptogenic effect in various animal models of epilepsy (Bough et al., 2000; Todorova et al., 2000; Mantis et al., 2004). Table 1, illustrates some of the correlatives that have been observed in mice and humans when treated with the KD by Stafstrom et al., 2004 (Stafstrom, 2004). While the mechanisms by which the KD inhibits seizure susceptibility remain unresolved, alterations in brain energy metabolism are likely involved (Mantis et al., 2004; Maalouf et al., 2009). Since the KD manages epilepsy best when administered in restricted amounts and since fasting lowers blood glucose levels, it is our contention that calorie restriction might contribute to the antiepileptic and anticonvulsant effects of the KD (Greene et al., 2001; Greene et al., 2003; Mantis et al., 2004). Furthermore, administration of the KD in restricted amounts would also reduce the adverse effects of the diet’s high fat content (e.g. weight gain, hypercholesterolemia, diabetes, and cardiovascular disease) if the diet were to be administered ad libitum for extended periods of time. Based on all presented findings, we consider that an energy restricted high fat ketogenic diet, or calorie restriction alone, would be more therapeutic for the management of seizures in both humans and animal models of epilepsy (such as the EL mouse), by transitioning brain energy metabolism from glucose to ketone bodies.
My dissertation research sought to examine the therapeutic efficacy of different dietary regimes, such as calorie restriction (CR) and the KD, in the management of both neurological and neurodegenerative diseases, including epilepsy and the MeCP2<sup>308/+/y</sup> mouse model of Rett Syndrome. Very few studies have investigated the relationship among ketones, glucose, and seizure susceptibility under long-term antiepileptic diet therapies. This thesis provides new evidence in the antiepileptic and neuroprotective mechanism of both calorie restriction and the KD. Investigation of blood metabolite changes in calorie-restricted mice further supports the role of ketone bodies (β-hydroxybutyrate) and glucose in the neuroprotective effect of CR and the KD. The molecular biomarkers that were investigated might provide additional evidence in the therapeutic efficacy of CR and the KD. Finally, my thesis provides the first guidelines for standardizing the implementation of diet therapies in the management of an array of neurodegenerative, neurological, or other types of diseases.
Figure 1. The Epileptic EL Mouse. The EL mouse is a model for multifactorial human idiopathic epilepsy. The mouse expresses excessive salivation, and head, limb, swallowing, and chewing automatisms. The arching Straub tail is indicative of seizure spread to spinal cord.
Figure 2. Influence of Fasting on Human Epileptic Seizures. The Y-axis represents the percentage of seizures taking the prefasting number as 100%. The X-axis represents days of fasting. The heavy solid line is the average of the five curves. The initials of Lennox’s patients are shown within the various data curves. Figure is reprinted with permission from Lennox and Cobb, Arch. Neurol. Psychiat. 20:771-779, 1928.
Number of Seizures

Fasting Days

PREFASTING NUMBER OF SEIZURES

AVERAGE OF ALL CURVES.

H.G.
D.T.
J.B.
L.R.
C.B.
<table>
<thead>
<tr>
<th></th>
<th>Observations in Animal Model</th>
<th>Clinical Correlates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seizure type</td>
<td>KD is effective in a wide</td>
<td>KD is effective in a wide variety of seizure types and</td>
</tr>
<tr>
<td></td>
<td>variety of seizure</td>
<td></td>
</tr>
<tr>
<td>Age range</td>
<td>Younger animals respond</td>
<td>Children utilize ketones more efficiently than adults</td>
</tr>
<tr>
<td></td>
<td>better to KD</td>
<td></td>
</tr>
<tr>
<td>Calorie or energy</td>
<td>Anticonvulsant properties</td>
<td>Anticonvulsant properties</td>
</tr>
<tr>
<td>restriction</td>
<td>(increases seizure threshold)</td>
<td>(reduces seizures)</td>
</tr>
<tr>
<td>Ketosis</td>
<td>A threshold level of ketosis</td>
<td>Ketosis is necessary but not sufficient</td>
</tr>
<tr>
<td></td>
<td>is necessary but not</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sufficient for the anticonvulsant</td>
<td></td>
</tr>
<tr>
<td>Reduced glycolysis</td>
<td>A reduction in circulating</td>
<td>A reduction in circulating</td>
</tr>
<tr>
<td>(reduction in circulating</td>
<td>glucose is necessary for the</td>
<td>glucose is necessary for the anticonvulsant properties of</td>
</tr>
<tr>
<td>glucose)</td>
<td>anticonvulsant properties of</td>
<td></td>
</tr>
<tr>
<td>Latency to KD</td>
<td>Several days</td>
<td>Several days to weeks</td>
</tr>
<tr>
<td>effectiveness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reversal of the</td>
<td>Rapid (hours)</td>
<td>Rapid (hours)</td>
</tr>
<tr>
<td>anticonvulsant effects</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)This table is modified from Stafstrom et al., 2004.
CHAPTER TWO

Management of Multifactorial Idiopathic Epilepsy in Adult EL Mice with Calorie Restriction and the Ketogenic Diet: Role of Glucose and Ketone Bodies

INTRODUCTION

The Influence of Calorie Restriction in the Management of Idiopathic Epilepsy in Adult EL Mice

CR is a natural dietary therapy that improves health, extends longevity, and reduces the effects of neuroinflammatory diseases in rodents and humans (Weindruch and Walford, 1988; Greene et al., 2001; Duan et al., 2003; Greene et al., 2003). CR is produced from a total dietary restriction and differs from acute fasting or starvation in that CR reduces total caloric energy intake without causing anorexia or deficiencies of any specific nutrients (Mantis et al., 2004; Seyfried et al., 2004). In other words, CR extends the health benefits of fasting while avoiding starvation. Recently, we showed that a 40% CR in the inbred control C57BL/6J mice produced changes in serum lipids similar to those seen in humans following therapeutic fasting or very low calorie dieting (below 500 kcal/day) (Mahoney et al., 2006). Besides improving health, CR has both antiepileptic and anticonvulsant effects in EL mice and in other animal epilepsy...
models (Bough et al., 1999b; Todorova et al., 2000; Greene et al., 2001). Although the mechanisms underlying the neuroprotective effects of CR are unknown, it is believed that neuroprotection is associated with reduced circulating glucose levels and elevated ketone body levels. With regard to epilepsy, the metabolic transition from glucose to ketone bodies as the primary cerebral energy source under CR conditions has been shown to reduce seizure frequency in epileptic rodents and humans by inducing synaptic changes that ultimately attenuate neuronal hyperexcitability thus increasing the extent to which these hyperexcitable foci are inhibited (Greene et al., 2003; Mantis et al., 2004; Seyfried et al., 2009b).

Glucose uptake and metabolism increases more during epileptic seizures than during most other brain activities (McIlwain, 1969; Meldrum and Chapman, 1999; Cornford et al., 2002). Also, blood glucose levels positively correlate with flurothyl-induced seizures in rats and high levels of glucose may exacerbate human seizure disorders (Schwechter et al., 2003). Neuronal excitability and epileptic seizures are directly related to rapid glucose utilization and glycolysis (McIlwain, 1969; Ackermann and Lear, 1989; Meric et al., 1994; Clarke and Sokoloff, 1999; Meldrum and Chapman, 1999; Cornford et al., 2000; Knowlton et al., 2002; Ikemoto et al., 2003; Schwechter et al., 2003). It is not yet clear, however, to what extent enhanced glycolysis is related to the cause or effects of seizure activity (Greene et al., 2003). Nevertheless, a transition in brain energy metabolism from glucose utilization to ketone body utilization reduces neural
excitation and increases neural inhibition through multiple integrated systems (Greene et al., 2003; Seyfried et al., 2004). Based on these observations (Ting and Degani, 1993; Li et al., 2000; Knowlton et al., 2002; Vielhaber et al., 2003), we proposed that most epilepsies, regardless of etiology or causality, might ultimately involve altered brain energy homeostasis (Greene et al., 2003).

In this study, we compared the antiepileptic and anticonvulsant effects of both the KD and CR in adult EL mice that experienced at least 15 recurrent complex partial seizures. The results show that seizure control in EL mice is more associated with the amount than with the origin of dietary calories, and that CR underlies the antiepileptic and anticonvulsant action of the KD in EL mice. A report of these findings has been presented (Mantis et al., 2003; Mantis et al., 2004).

MATERIALS AND METHODS

Mice

The inbred EL/Suz (EL) mice were originally obtained from J. Suzuki (Tokyo Institute of Psychiatry). The mice were maintained in the Boston College Animal Care Facility as an inbred strain by brother x sister mating. The mice were group housed (prior to initiation of study) in plastic cages with Sani-chip
bedding (P.J. Murphy Forest Products Corp., Montville, N.J.) and kept on a 12-hr light/dark cycle at approximately 22°C. Cotton nesting pads were provided for warmth when animals were individually housed. All cages and water bottles were changed once per week. Only females were used for these studies as adult males die sporadically with age from acute uremia poisoning due to urinary retention (Todorova et al., 2003). The procedures for animal use were in strict accordance with the NIH Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care Committee.

Seizure Susceptibility and Seizure Testing

Seizure onset in EL mice (Figure 1) is generally between 60-70 days of age as previously described (Todorova et al., 1999a). These seizures occur occasionally during routine cage changing. Our recently developed seizure handling protocol was used to regularly induce seizure susceptibility in EL mice (Todorova et al., 1999a; Greene et al., 2001). Briefly, the testing procedure included repetitive handling and simulated the stress normally associated with weekly cage changing, i.e., picking the mouse up by the tail for short intervals and transferring it to a clean cage with fresh bedding. The test included two trials that were separated by 30 min. In each trial, a single mouse was held by the tail for 30 sec at approximately 10-15 cm above the bedding of its home cage. After 30 sec, the mouse was placed into a clean cage with fresh bedding for 2 min.
The mouse was then held again for 15 sec before being returned to its home cage. Trial 2 was performed even if the mouse experienced a seizure in trial 1. The epileptic seizures commenced during holding or soon after the mice were placed on the clean bedding. Mice that developed an epileptic seizure while handled were placed immediately in either the clean cage or their home cage depending on the testing stage. Mice were tested each week for a total of 13 measurements over a 12-week period using this method. Mice were undisturbed between testing phases (no cage changing) and testing was performed between 12 to 3 pm.

**Seizure Phenotype**

Mice were designated seizure susceptible if they experienced a generalized seizure during seizure testing. Generalized seizures in EL mice involve loss of postural equilibrium and consciousness, together with excessive salivation, head, limb, and chewing/swallowing automatisms. An erect forward-arching Straub tail, indicative of spinal cord activation, was also seen in most mice having generalized seizures. Mice that displayed only vocalization and twitching without progression to generalized seizure were not considered seizure susceptible (Todorova et al., 1999a; Greene et al., 2001). Seizure susceptibility scores were generated for each mouse according to the seizure severity scores previously described (Table 2) (Todorova et al., 1999a). Mice having a score of
4 or 5 were assigned a susceptibility score of 1.0, whereas mice having a seizure severity score less than 4 were given a susceptibility score of 0. The seizure susceptibility for each mouse was then averaged over multiple tests and the mean seizure susceptibility for a mouse dietary group was determined.

**Diets**

All mice received PROLAB RMH3000 chow diet (SD) prior to experimentation (LabDiet®). This is the standard food pellet diet (SD) and contained a balance of mouse nutritional ingredients. According to the manufacturer's specification, this diet delivers 4.4 Kcal/g gross energy, where fat, carbohydrate, protein, and fiber comprised 55 g, 520 g, 225 g, and 45 g/Kg of the diet, respectively. The ketogenic diet was obtained from the Zeigler Bros., Inc. (Gardners, PA, USA) in butter-like form and also contained a balance of mouse nutritional ingredients. According to the manufacturer's specification, the KD delivers 7.8 Kcal/g gross energy, where fat, carbohydrate, protein, and fiber comprised 700 g, 0 g, 128 g, and 109 g/Kg of the diet, respectively. The fat in this diet was derived from lard and the diet had a ketogenic ratio (fats: proteins + carbohydrates) of 5.48:1. The individual % composition of each dietary energy component for the SD and KD diets used in our studies is shown on Table 3.
Pre-Trial Period

Seizure susceptibility, body weight, and food intake were measured four times over a three-week period in 24 singly caged female EL mice (approximately 210 days of age). All mice received the SD during the pre-trial period and food intake was determined by subtracting the weight of food pellets remaining in the food hopper after one week from the initial amount given (200 g). The difference was then divided by seven to estimate the average daily food intake. Thus, all mice were highly seizure susceptible at the initiation of the diet therapy.

Dietary Treatment

After the three-week pre-trial period, the mice were placed into four groups (n = 6 mice/group) where the average body weight of each group was similar (about 31.0 ± 1.5 g) (Figure 3). All mice were then fasted for 14 hr to establish a similar metabolic set point at the start of the experiment (arrow, Figure 3). The mice in each group were then given one of four diets to include: 1) the standard diet fed ad libitum or unrestricted (SD-UR), 2) the KD fed ad libitum or unrestricted (KD-UR), 3) the SD restricted to achieve a 20-23% body weight reduction from the pre-trial weight (SD-R), and 4) the KD restricted to achieve a 20-23% body weight reduction from the pre-trial weight (KD-R). Each mouse in
the two R groups served as its own control for body weight reduction. Based on food intake and body weight during the pre-trial period, food in the R-fed mouse groups was reduced until each mouse achieved the target weight reduction of 20-23%. In other words, the daily amount of food given to each R mouse was reduced gradually until it reached 77-80% of its initial (pre-trial) body weight.

The mice in the SD-UR group received 200 g of food in the hopper/week as in the pre-trial period. For mice in the SD-R group, weighed food pellets were dropped directly inside each cage for easy access. The KD was administered to the mice in a modified plastic Falcon tissue culture dish (60 mm x 15 mm). The dish edges were shaved to reduce the height from 15 mm to about 6 mm. After placing about 5 g of KD in the dish for the KD-UR mice, the dish with the weighed KD was inverted and placed on the top of the food hopper. An empty water bottle was placed on top of the dish to prevent dish movement during animal feeding. The butter-like consistency adhered the KD to the inverted dish. This feeding apparatus allowed the mice easy access to the KD and prevented KD contact with bedding material. After about 24 hr, the amount of KD consumed was determined by measuring the left over KD in the dish and another 5 grams of fresh KD were added to the dish. The KD was therefore given fresh every day without moving or disturbing the mice. The total amount of KD consumed per day was summed each week and divided by 7 to obtain the average weekly food intake of each mouse. For the KD- R mice, a calculated restricted amount of KD was placed directly on top of the food hopper bars for easy access. The R-fed
mice licked the bars clean of the KD. The dietary treatment was implemented for nine weeks.

**Measurement of Plasma Glucose and β-Hydroxybutyrate**

Blood was collected approximately 1 hr after seizure testing except for the pre-trial period where blood was not collected. Blood was first collected from all mice about 24 hr prior to the initiation of the 14 hr fast (arrow on Figure 3). Mice were anesthetized with isoflurane, USP (Halocarbon, River Edge, NJ, USA) and blood was collected in heparinized tubes by puncture of the retro-orbital sinus using a borosilicated capillary tube (FHC, Bowdoinham, ME, USA). The blood was centrifuged at 6,000 x g for 10 min, the plasma was collected, and aliquots were stored at −80°C until analysis. Plasma glucose concentration was measured spectrophotometrically using the Trinder Assay (Sigma-Aldrich, St. Louis, MO, USA). Plasma β-hydroxybutyrate concentration was measured using either the Stanbio β-Hydroxybutyrate LiquiColor® procedure (Stanbio, Boerne, TX, USA), or a modification of the Williamson et al. procedure (Williamson et al., 1962).

Briefly, for measuring β-Hydroxybutyrate using Williamson’s modified assay, 50 μl of a substrate containing cocktail buffer, containing: 0.5 ml of 1 M of 2-Amino-2-methylpropanol (AMP) (pH 9.9), 3 ml of 50 mM NAD⁺, 0.2 ml of 100 mM EDTA, and 1.3 ml ddH₂O was pipetted in each well of a half-area clear microplate. Pipet in triplicate 50 μl of ddH₂O (Lin et al.), 50 μl of β-
hydroxybutyrate standards (0.25 mM, 0.165 mM, 0.0825 mM, 0.04125 mM, 0.033 mM, 0.0165 mM), and finally 50 μl of your plasma/serum sample in each corresponding well. Initial absorbance for all samples is read at 340 nm, using a 5 min kinetic absorbance mode on a SpectaMax M5 spectrophotometer. Absorbance is then corrected using the pathcheck function (normalize the well absorbance to a cuvette of an equivalent 1 cm pathlength) on the plate reader. 5 μl of a 2.6-fold diluted 1.33% (w/v) β-hydroxybutyrate dehydrogenase enzyme dissolved in 3.2 M (NH₄)₂SO₄ is then pipetted in each well. After absorbance is corrected once more using the pathcheck function, and the final absorbance for all samples is read at 340 nm, using a 40 min kinetic absorbance mode. After making a standard curve by plotting the corrected change of absorbance (Absfinal-Absinitial) for each standard, the β-hydroxybutyrate concentration for each sample was calculated. An analytical version of this assay is shown on Appendix C.

**Statistical Analysis**

Both ANOVA and a two-tailed t-test were used to evaluate the significance of differences of body weight, seizure susceptibility, plasma glucose levels, and plasma β-hydroxybutyrate levels between unrestricted and restricted groups. Chi-square analysis was performed on the association between glucose and seizures. Pearson bivariate correlation analysis (SPSS software) was used to determine the relationship between body weight, food intake, plasma glucose
levels, plasma β-hydroxybutyrate levels, and seizure susceptibility. Binary logistic regression (SPSS) was used to determine the relationship between seizure susceptibility, plasma glucose, and β-hydroxybutyrate levels on mice fed either the SD or the KD. Differences were considered significant at $P \leq 0.01$. All values are expressed as mean ± SEM. All statistical data were presented according to the recommendations of Lang et al., (Lang and Secic, 1997).

RESULTS

Diet Composition and Tolerance

The composition of each diet is shown in Table 3 and in the Methods. No adverse effects of the diets were observed in either R-fed mouse group. Despite the 20-23% body weight reduction, mice in both R-fed groups appeared healthy and were more active than the mice in the UR-fed groups as assessed by ambulatory and grooming behavior. With the exception of oily fur, the KD-fed mice appeared active and healthy throughout the study as previously found (Todorova et al., 2000). No signs of vitamin or mineral deficiency (e.g. reduced life span, kidney and eye abnormalities) were observed in the R-fed mice according to standard criteria for mice (Hoag and Dickie, 1968). These findings are consistent with the well-recognized health benefits of mild to moderate caloric
restriction in rodents (Keenan et al., 1999), and support our previous findings that both the KD and a moderate CR are well tolerated by EL mice (Todorova et al., 2000; Greene et al., 2001).

Influence of Calorie Restriction on Body Weight

All mice were matched for age (approximately 210 days) and body weight (approximately 31.0 ± 1.5 g) before the start of the dietary treatment (Figure 3). All mice lost approximately 7-9% of their body weight during the 14 hr fast. Body weight remained relatively stable over the nine-week treatment period in both UR-fed mouse groups (Figure 3). The 20-23% body weight reduction was achieved in the R-fed groups after about two weeks of gradual food restriction. However, more difficulty was encountered initially in maintaining a stable body weight reduction for the KD-R group than for the SD-R group. This difficulty may result from the high caloric content of the KD that produces greater body weight changes per calorie adjustment than the SD. We also estimated that the degree of CR necessary to maintain the 20-23% body weight reduction was about 38-45% for the SD and about 45-52% for the KD.

Influence of Diets on Seizure Susceptibility in Adult EL Mice
All mice had at least 15 recurrent seizures before the start of dietary treatment (arrow, Figure 3). The seizures occurred occasionally during routine cage changing prior to the pre-trial period and regularly from handling during the pre-trial test period. Seizure susceptibility was analyzed in all mouse groups after the R-fed mice achieved a stable body weight reduction, i.e., week five of treatment (Figures 3 and 4). Seizure susceptibility was high for both UR-fed groups throughout the study. In both R-fed groups, seizure susceptibility decreased from 1.0 to about 0.3 after two weeks and remained significantly lower than that of the UR-fed control groups from treatment weeks 5-12 (Figure 4). Only a single mouse in the KD-R group had a break-through seizure on week 8. Taken together, our findings show that seizure management in EL mice is more associated with the amount than with the origin of dietary calories.

Influence of Diets on Plasma Glucose and β-Hydroxybutyrate Levels

Plasma glucose levels were analyzed in all mouse groups after the R-fed mice achieved a stable body weight reduction (Figures 3 and 5). Glucose levels remained high for both UR-fed groups throughout the study and were stable over treatment weeks 5-12. However, plasma glucose levels were somewhat lower (about 8 mM) in both UR-fed groups between treatment weeks 3-5 compared to the pre-trial glucose levels (about 10 mM). This reduction might result from a combination of repetitive handling, seizures, blood collection, and the initial fast
(Figure 5). In both R-fed mouse groups, the plasma glucose levels decreased from about 10 mM to about 5.0 mM after three weeks and remained significantly lower than those of their respective UR-fed control groups.

Plasma β-hydroxybutyrate levels were also analyzed in all mouse groups after the R-fed mice achieved a stable body weight reduction (Figures 3 and 6). These levels remained low in the SD-UR group throughout the study and were stable for treatment weeks 5-12 (Figure 6). β-hydroxybutyrate levels were significantly higher in the R-fed groups than in their respective UR-fed control groups. These levels were also significantly higher in the KD-UR group than in the SD-UR group. The levels increased from about 0.4 mM to about 1.7 mM in the SD-R group and to about 3.0 mM in the KD-R group. These findings demonstrate that circulating β-hydroxybutyrate levels were inversely related to circulating glucose levels and that elevated β-hydroxybutyrate levels alone are not associated with seizure susceptibility.

Statistical Relationships Among Variables

The relationship between body weight, food intake, plasma glucose levels, plasma β-hydroxybutyrate levels, and seizure susceptibility was determined using Pearson bivariate correlation analysis (Table 4). All variables were significantly ($P < 0.01$) correlated with each other. Positive correlations were found among body weight, food intake, glucose, and seizure susceptibility. On
the other hand, β-hydroxybutyrate was negatively correlated with all variables. The correlations among glucose, β-hydroxybutyrate, and seizure susceptibility were also apparent from the data in Figures 4-6. Plasma glucose was significantly ($P < 0.001$) associated with seizure susceptibility in the EL mouse, as determined by Chi-square analysis (Figure 7). These results support our previous findings that glucose levels are predictive of seizure susceptibility in adult EL mice (Greene et al., 2001; Greene et al., 2003).

Binary logistic regression was also used to determine the relationship between seizure susceptibility, plasma glucose, and plasma β-hydroxybutyrate levels when mice were fed either the SD and/or the KD. The data indicate that regardless of diet, glucose could predict seizure susceptibility with an approximate 75 to 78 % accuracy (Table 5). Although β-hydroxybutyrate could also predict seizure susceptibility, we previously showed that β-hydroxybutyrate levels were dependent on and were inversely related to plasma glucose levels (Greene et al., 2001).

DISCUSSION

We found that restriction of either a high carbohydrate low fat standard diet or a high fat low carbohydrate KD was equally effective in reducing seizure susceptibility in adult EL mice with active epilepsy. Moreover, seizure
susceptibility remained similarly high in these mice when either diet was fed *ad libitum* or unrestricted. These findings indicate that the KD, when fed unrestricted, is unable to reduce seizure susceptibility in adult EL mice. Although the KD delays epileptogenesis in young seizure naïve EL mice when fed *ad libitum*, the effect is transient (Todorova et al., 2000). These findings are interesting since previous observations with children suggest that the antiepileptic and anticonvulsant effects of the KD are best when the diet is administered in restricted amounts (Freeman et al., 2000; Stafstrom and Bough, 2003). Indeed, seizure protection is often less in children that gain weight than in those who maintain or reduce body weight on the KD (Freeman, personal communication). Previous studies also indicate that restriction of high carbohydrate diets elevate seizure threshold (Eagles et al., 2003). Our findings in EL mice support these observations and suggest that CR may be necessary for the antiepileptic and anticonvulsant effects of the KD.

We previously showed that mild to moderate CR delayed epileptogenesis and reduced seizure susceptibility in seizure naïve juvenile and adult EL mice by reducing blood glucose and elevating ketone bodies (Greene et al., 2001). Although our data show that circulating β-hydroxybutyrate levels are inversely related to circulating plasma glucose levels, elevated ketone body levels are not directly associated with reduced seizure susceptibility in EL mice. This conclusion derives from the finding that seizure susceptibility is high in the KD-UR mice despite elevated β-hydroxybutyrate levels and from finding that seizure
protection was similar in the SD-R and KD-R groups despite significantly higher \( \beta \)-hydroxybutyrate levels in the KD-R than in the SD-R group. These results are consistent with previous studies in EL mice and in non-genetic seizure models that elevated ketone bodies alone are unable to account for the antiepileptic or anticonvulsant action of the KD (Appleton and De Vivo, 1974; Bough et al., 1999a; Likhodii et al., 2000; Thio et al., 2000; Todorova et al., 2000; Harney et al., 2002; Stafstrom and Bough, 2003; Seyfried et al., 2004).

Under normal physiological conditions brain cells derive most of their energy from glucose or glucose-derived metabolites, e.g., lactate (Clarke and Sokoloff, 1999; Bouzier-Sore et al., 2002; Kasischke et al., 2004). Also, brain glucose uptake is greater during epileptic seizures than during most other brain activities (Meldrum and Chapman, 1999). During fasting or calorie restriction, however, circulating glucose levels fall causing brain cells to rely more heavily for energy on ketone bodies that gradually increase with food restriction (Owen et al., 1967; Greene et al., 2003). It is the transition from glucose to ketone bodies for brain energy that is thought to underlie the antiepileptic and anticonvulsant effects of calorie restriction (Greene et al., 2003). Although the KD we used contained no carbohydrates, the mice eating this diet maintained high glucose levels and seizure susceptibility. The persistence of high glucose levels in the KD-UR group would prevent the transition to ketones for energy despite high levels of circulating ketone bodies. Our results show that circulating glucose
levels accurately predict seizure susceptibility in EL mice regardless of diet composition or circulating ketone body levels.

We used a new experimental design for calorie restriction in this study (Chapter 5 addresses this rationale further). Briefly, instead of restricting calories in the R-fed mice based on the average food consumption of the UR control mice as previously done (Greene et al., 2001), each R-fed mouse served as its own control to achieve and maintain a 20-23% body weight reduction. The new experimental design reduces variability in body weights and in caloric intake among mice fed diets widely different in nutritional composition and caloric content. In using body weight, rather than caloric intake, as an independent variable we were able to more accurately measure the statistical associations among circulating energy metabolites and seizure susceptibility. Thus, this type of experimental design is recommended for those studies attempting to evaluate the relationships among nutrition, metabolism, and disease phenotype.

We conclude that seizure susceptibility in EL mice is dependent on plasma glucose levels and that seizure control depends more on the amount than on the origin of dietary calories. A reduction of glucose and a subsequent increase in ketone bodies results in the zone of seizure management in the EL mice (Figure 8). Also, we found that CR underlies the antiepileptic action of the KD in EL mice. A transition from glucose to ketone bodies for energy is predicted to manage EL epileptic seizures through multiple integrated changes of inhibitory and excitatory neural systems. A detail biochemical and molecular analysis of the
anticonvulsant mechanism of calorie restriction and the ketogenic diet is shown in Chapter 6.
<table>
<thead>
<tr>
<th>Scores</th>
<th>Response to handling stimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Squeaking</td>
</tr>
<tr>
<td>2</td>
<td>Immobility, blinking, mild facial clonus</td>
</tr>
<tr>
<td>3</td>
<td>Catatonic posture with erect tail</td>
</tr>
<tr>
<td>4</td>
<td>Forelimb clonus</td>
</tr>
<tr>
<td>5</td>
<td>Generalized tonic convulsion</td>
</tr>
</tbody>
</table>

"Reprinted with permission from Todorova et al., 2000."
Table 3. Composition (%) of the Standard Diet, and Various Ketogenic Diets

<table>
<thead>
<tr>
<th>Components</th>
<th>Standard Diet (SD)</th>
<th>Ketogenic Diet (KD)</th>
<th>KetoCal (R) Diet (KC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrate</td>
<td>62</td>
<td>0</td>
<td>3,3</td>
</tr>
<tr>
<td>Fat</td>
<td>6</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Protein</td>
<td>27</td>
<td>14</td>
<td>16,7</td>
</tr>
<tr>
<td>Fiber</td>
<td>5</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Energy (Kcal/gr)</td>
<td>4,1</td>
<td>7,8</td>
<td>7,2</td>
</tr>
</tbody>
</table>

1 According to manufacturer's specifications (see Methods).
Figure 3. Influence of Diet on Body Weight in Adult EL Mice Fed the SD (A) or the KD (B). Asterisks indicate that the body weight of the R-fed mice was significantly different from their respective UR-fed groups (P< 0.01) during weeks 5-12. Squares represent the pre-trial period when all mice were fed the SD-UR. Circles and triangles represent the UR-fed and R-fed groups, respectively. Values are expressed as the mean ± SEM (n = 6 mice per group). Arrow indicates initiation of CR.
Figure 4. Influence of Diet on Seizure Susceptibility in Adult EL Mice. Seizure susceptibility was significantly lower (*$P < 0.001$) in the R-fed groups than in their respective UR-fed groups. Values were pooled from treatment weeks 5-12 (see Figure 1) and are expressed as the mean ± SEM (n = 6 mice per group).
Figure 5. Influence of Diet on Plasma Glucose Levels in Adult EL Mice. Plasma glucose levels were significantly lower (*$P < 0.001$) in the R-fed groups than in their respective UR-fed groups. Other conditions are as in Figures 1 and 2.
Figure 6. Influence of Diet on Plasma $\beta$-Hydroxybutyrate Levels in Adult EL Mice.

Plasma $\beta$-hydroxybutyrate levels were significantly higher (*$P < 0.001$) in the R-fed groups than in their respective UR-fed groups. In addition plasma $\beta$-hydroxybutyrate levels were significantly higher (†$P < 0.001$) in the KD-UR group than in the SD-UR group. Other conditions are as in Figures 3 and 4.
Figure 7. Association of Plasma Glucose and Seizure Susceptibility in Adult EL Mice. Data were obtained from all four dietary groups over treatment weeks 3-12 for a total of 234 seizure and glucose measurements. Seizure frequency in the three plasma glucose groups (< 6.5 mmol, 6.5-8.5 mmol, and > 8.5 mmol/L) was 8/234, 44/234, and 70/234, respectively. The association between glucose and seizure susceptibility was highly significant as determined by Chi-square analysis (P < 0.001).
Figure 8. Relationship of Circulating Glucose and Ketone Levels to Seizure Management in Epileptic EL Mice.
Table 4 - Pearson Bivariate Correlation of Body Weight, Food Intake, Plasma Glucose Levels, Plasma β-hydroxybutyrate Levels, and Seizure Susceptibility in Adult EL Mice¹

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Body weight (g)</th>
<th>Food Intake (Kcal)</th>
<th>Glucose (mM)</th>
<th>Ketones (mM)</th>
<th>Seizure Susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (g)</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food Intake (Kcal)</td>
<td>0.488*</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose (mM)</td>
<td>0.509*</td>
<td>0.382*</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketones (mM)</td>
<td>-0.379*</td>
<td>-0.379*</td>
<td>-0.429*</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Seizure Susceptibility</td>
<td>0.512*</td>
<td>0.464*</td>
<td>0.616*</td>
<td>-0.510*</td>
<td>1.000</td>
</tr>
</tbody>
</table>

¹ Data were obtained from all four dietary groups over the treatment weeks 3-12 for a total number of 210 seizure and glucose measurements (see figure 1).
* All correlations were significant at the 0.01 level (2-tailed).
Table 5 - Binary Logistic Regression Analysis of the Maximum Likelihood Estimates Between Plasma Glucose, and Seizure Susceptibility in Adult EL Mice Fed Either the SD or KD

<table>
<thead>
<tr>
<th>Dietary groups</th>
<th>Parameter</th>
<th>Df^2</th>
<th>B^3</th>
<th>SEM^4</th>
<th>Wald x^2 5</th>
<th>p value^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>Glucose</td>
<td>1</td>
<td>0.774</td>
<td>0.139</td>
<td>30.962</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>1</td>
<td>-5.484</td>
<td>1.013</td>
<td>29.292</td>
<td>0.01</td>
</tr>
<tr>
<td>KD</td>
<td>Glucose</td>
<td>1</td>
<td>0.787</td>
<td>0.157</td>
<td>25.033</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>1</td>
<td>-5.801</td>
<td>1.180</td>
<td>24.177</td>
<td>0.01</td>
</tr>
<tr>
<td>Both Diets</td>
<td>Glucose</td>
<td>1</td>
<td>0.752</td>
<td>0.102</td>
<td>54.682</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>1</td>
<td>-5.507</td>
<td>0.759</td>
<td>52.625</td>
<td>0.01</td>
</tr>
</tbody>
</table>

^1 Data were obtained from all four dietary groups over the treatment weeks 3-12 for a total number of 210 individual measurements of plasma glucose and seizure susceptibility.

^2 Df, degrees of freedom.

^3 B, Estimate of the association between glucose and seizure susceptibility.

^4 The estimated error of the mathematical weighting, indicating the precision of the estimated coefficient.

^5 The Wald test statistic was computed from the data compared by using x^2 distribution with 1 degree of freedom. The test statistic is used to determine the p value.

^6 The probability of Type I error.
CHAPTER THREE

Glucose Reduces the Antiepileptic and Anticonvulsant Effects of the Ketogenic Diet in EL mice

INTRODUCTION

The influence of KetoCal® in the Management of Idiopathic Epilepsy in Young Adult EL Mice

Our research focuses on the use of diets as a therapy for neurological and neurodegenerative diseases. We previously found that CR underlies the anticonvulsant and antiepileptic effect of the KD in reducing seizure susceptibility in adult EL mice (Greene et al., 2001; Mantis et al., 2004; Seyfried et al., 2009b). Also as previously found, this anticonvulsant effect of CR and the KD was associated with a significant reduction in circulating plasma glucose levels and a subsequent elevation of ketone body levels (Mantis et al., 2004; Seyfried et al., 2009b). Furthermore, we have shown that the KD when given in unrestricted or ad libitum amounts has a transient effect in delaying the epileptogenesis (seizure onset) in young EL mice (Todorova et al., 2000). Interestingly, viewing together all our previous findings indicate that the seizure control in the EL mice using CR or the KD is associated more with the amount rather than the origin of dietary calories.
Currently, several types of ketogenic diets are being employed for epilepsy treatment (Gasior et al., 2006). The most frequently used therapeutic KD is the traditional ketogenic diet, developed by Wilder in 1921, which is based on long-chain fatty acids (Wilder, 1921). A medium-chain triglyceride diet was introduced in the 1950’s, which startlingly produces greater ketosis, due to a faster rate of fatty acid oxidation (Huttenlocher et al., 1971; Huttenlocher, 1976). This stems from the fact that ketosis was originally believed to underlie the anticonvulsant effects of fasting (see Chapter 1 for additional information) (Wilder, 1921; Lennox, 1960). This modification has not been widely accepted because it is associated with bloating and abdominal discomfort and is no more efficacious than the traditional ketogenic diet (Gasior et al., 2006). A third variation on the diet, known as the Radcliffe Infirmary diet, represents a combination of the traditional and medium-chain triglyceride diets (Schwartz et al., 1989; Gasior et al., 2006). Its efficacy is also similar to the traditional ketogenic diet.

In contrast to other ketogenic diet formulations (lard-based or medium chain triglyceride diets), which are not standardized or commercially available, KetoCal®, (KC), is a nutritionally balanced soy oil-based KD that has been approved by the FDA for the management of seizures in children with intractable epilepsy (Zhou et al., 2007; Mantis et al., 2009). According to the manufacturer’s (Nutricia North America) recommendation for the management of seizures, KC is administered in restricted amounts. This involves a 65–70%
recommended daily allowance of calories or an approximate 30–35% calorie restriction. Hence, as seen with a restricted KD this recommended administration of KC should not only reduce the adverse effects of the diet’s high fat content (Kang et al., 2004; Sampath et al., 2007; Marsh et al., 2008a), but also provide maximum therapeutic antiepileptic and anticonvulsant efficacy (Mantis et al., 2004; Zhou et al., 2007; Raffo et al., 2008; Coppola et al., 2009; Seyfried et al., 2009b). This suggests that the neuroprotective effects of both the KD and that of KC could only be achieved under CR conditions (Zhou et al., 2007). Interestingly, in clinical settings, it has been shown that the antiepileptic efficacy of the KD or that of fasting is usually lost as a result of administration of excess calories (Lennox and Cobb, 1928; Huttenlocher, 1976; Freeman et al., 2000; Freeman et al., 2007; Seyfried et al., 2009b). Similar observations are seen in energy-restricted animals weaned away from the KD to an unrestricted high carbohydrate diet, which has resulted in a loss of the anticonvulsant effects of the diet (Bough and Rho, 2007).

As mentioned previously, since epileptic seizures depend on glucose uptake and metabolism (McIlwain, 1969; Meldrum and Chapman, 1999; Cornford et al., 2002), it will be interesting to know whether supplementation of the free form of D-glucose has a similar effect in abolishing the antiepileptic efficacy of the KD in calorically restricted EL mice. In accordance to our previous findings where an unrestricted KD was shown to transiently delay epileptogenesis in young naïve (not yet seizure susceptible) EL mice (30 days-old), we propose that
KC could also have a positive antiepileptic and anticonvulsant effect in young sexually mature EL mice with active epilepsy, and that glucose supplementation in dietary restricted EL mice may result in marked change of the therapeutic efficacy of CR.

In this study, we evaluated the antiepileptic and anticonvulsant efficacy of KC in young adult EL mice. Our results are consistent with our previous findings that seizure control in the EL mice is associated more with the amount rather than the origin of dietary calories. We also confirmed that CR underlies the anticonvulsant action of the KD in EL mice, and that the neuroprotective effect of CR was associated with a significant reduction in circulating plasma glucose levels and a subsequent elevation of ketone body levels. Although a restricted KC was able to reduce seizure susceptibility in young adult EL mice, supplementation of glucose in the drinking water of restricted mice resulted in a reduced anticonvulsant efficacy of CR. Finally, for the first time we were able to show that KC fed in unrestricted amounts was able to reduce the severity and frequency of seizures in young EL mice.

MATERIALS AND METHODS

Mice
The EL mouse model used in this study is previously described in the Materials and Methods section of Chapter 2.

**Seizure Susceptibility, Seizure Testing, and Seizure Phenotype**

The seizure susceptibility paradigm for testing EL mice, along with the seizure phenotype of these mice is previously described in the Materials and Methods section of Chapter 2.

**Diets**

Similarly to what was previously described for adult EL mice (see Chapter 2), all mice received the SD prior to experimentation. The KetoCal® ketogenic diet was obtained as a gift from Nutricia North America (Rockville, MD, formally SHS International, Inc.). The KetoCal® diet (KC) is a nutrient balanced soy oil-based high fat, low carbohydrate KD diet that delivers 7.2 kcal/g of gross energy where fat, carbohydrate, protein, and fiber comprised 720 g, 30 g, 150 g, and 0 g/kg of the diet, respectively (Zhou et al., 2007; Mantis et al., 2009). There are also minor differences between the SD and KC for the content (g/kg of diet) of amino acids, vitamins, minerals and trace elements. KC has a ketogenic ratio (fats: proteins + carbohydrates) of 4:1 and the fat was derived from soybean-oil. KC was fed to the mice in paste form (water: KC; 1:2) within the cage as
previously described (Zhou et al., 2007; Mantis et al., 2009). The specific feeding regimen for the SD-R and the KC-R mice was performed accordingly to what was described previously (Mantis et al., 2004; Zhou et al., 2007). Briefly both the SD and KC diets are calorie restricted to reduce mouse body weights by 15-18% compared to their pre-trial body weight. Water was provided *ad libitum* to all mice throughout the study. The energy composition of the SD and the KC diets is shown in Table 2.

**Pre-Trial Period**

Seizure susceptibility, body weight, and food intake was measured 5 times over a 6-week period in 34 singly housed young adult female EL mice (about 40 days old) fed the SD unrestricted as previously described (Chapter 2) (Mantis et al., 2004). Mice were approximately 80 days of age at the end of the pre-trial period. All mice were highly seizure susceptible at the initiation of the diet therapy, and had experienced at least 3 recurrent complex partial seizures prior to diet initiation.

**Dietary Treatment**

After the 6-week pre-trial period, the mice were placed into five groups (n = 6-8 mice/group) where the average body weight of each group was similar
(about 26.2 ± 0.5 g) (Figure 8). All mice were then fasted for 14 hr to establish a similar metabolic set point at the start of the experiment. The mice in each group were then given one of five diets: 1) the standard diet fed *ad libitum* or unrestricted (SD-UR), 2) the KC fed *ad libitum* or unrestricted (KC-UR), 3) the KC restricted to achieve a 15-18% body weight reduction from the pre-trial weight (KC-R), 4) the KC restricted to achieve a 15-18% body weight reduction from the pre-trial weight, with the supplementation of D-glucose (25 mM) in the drinking water 0.5hr before seizure testing (KC-R + 0.5hr [Glu]), and 5) the KC restricted to achieve a 15-18% body weight reduction from the pre-trial weight, with the supplementation of D-glucose (25 mM) in the drinking water 2.5hr before seizure testing (KC-R + 2.5hr [Glu]). Each mouse in the three R groups served as its own control for body weight reduction. Based on the food intake and body weight during the pre-trial period, food in the R-fed mouse groups was reduced until each mouse achieved the target weight reduction of a 15-18%. In other words, the daily amount of food given to each R mouse was reduced gradually until it reached 82-85% of its initial (pre-trial) body weight. The dietary treatment period lasted for nine weeks.

The feeding paradigm for the SD-UR and KC mouse groups is similar to that of the SD-UR and KD mouse groups described in the Materials and Methods section of Chapter 2. The two KC-R mouse groups that were supplemented with glucose in their drinking water also were fed similarly to KD-R group described previously in the Materials and Methods section of Chapter 2, with the exception
that 25 mM of D-glucose was provided *ad libitum* in their drinking water 0.5 hr or 2.5 hr prior to seizure testing. For the KC-R mouse group that had no glucose on its drinking water, KC was administered as previously described in the Materials and Methods section of Chapter 2. For all KC-R mice, a calculated restricted amount of KC was placed directly on top of the food hopper bars for easy access.

**Measurement of Plasma Glucose and β-Hydroxybutyrate**

Blood was collected approximately 1 hr after seizure testing every three weeks, as described in the Materials and Methods section of Chapter 2. In various animals it has been shown that exposure to stressors, such as eye bleeding, can cause a varying effect of physiological changes in the animal body weight, growth, and food intake regulation (Armario et al., 1988; Marti et al., 1993; Marti et al., 1994; Valles et al., 2000). Plasma glucose and β-hydroxybutyrate concentrations were measured spectrophotometrically, using the StanBio® Enzymatic Glucose Assay (1075-102) (StanBio Laboratory, Boerne, TX, USA) and a modification of the Williamson *et al.*, enzymatic procedure (Williamson *et al.*, 1962), respectively. Detailed description of the β-hydroxybutyrate assay is shown in the methods and materials of Chapter 1 and also in Appendix C.
Statistical Analysis

Both ANOVA and a two-tailed $t$-test were used to evaluate any significant differences in body weight, seizure susceptibility, plasma glucose levels, and plasma β-hydroxybutyrate levels between unrestricted and restricted groups. Differences were considered significant at $P \leq 0.01$. All values are expressed as mean ± SEM. All statistical data were presented according to the recommendations of Lang et al., (Lang and Secic, 1997).

RESULTS

Influence of KC on Body Weight and Diet Tolerance

Similarly to what we have observed in brain cancer management using KC, no adverse effects, or signs of vitamin and mineral deficiency were observed in the KC-R fed mouse groups. Despite the 15-18% body weight reduction, KC-R fed mice appeared healthy and more active than mice in the UR-fed groups. With the exception of oily fur, the KC-fed mice appeared active and healthy throughout the study as previously found (Zhou et al., 2007). These findings indicate that KC was well tolerated by EL mice and moderate calorie restriction has the well-recognized health benefits in rodents (Keenan et al., 1999).
Throughout the study, the body weights remained relative similar (e.g. about 30 g at the end of the study) in the two unrestricted mouse groups (Figures 9A and B), despite major differences in calorie and compositional content of these diets (Table 3). In the R-fed groups, a significant loss of body weight was noticed within the first week of the treatment (Figure 9A). The suggestive 15-18% body weight reduction was achieved and maintained in all R-fed groups by week three of the dietary treatment. Supplementation of D-glucose prior to seizure testing had no effect in body weight. These findings indicate that KC when given in restricted amounts produced noticeable improvement in health and vitality, in concurrence with the body weight reduction.

**Influence of KC on Seizure Susceptibility in Young Adult EL Mice**

All mice had experienced at least three complex partial seizures with secondary generalization prior to the initiation of the diet. Feeding young EL mice with unrestricted amounts of either the KC or the SD had a varying effect on seizure susceptibility. Although seizure remained relative high for the duration of the study in both UR-fed groups, the seizure susceptibility in the SD-UR group increased significantly compared to the seizure susceptibility in the KC-UR mice at the end of the study (Figures 10 and 11). On the other hand, mean seizure frequency was reduced by almost 50% in all KC-R fed groups by week three of treatment (data not shown). In addition, the mean seizure susceptibility in the
KC-R group remained significantly lower than that of the two UR-fed groups for the duration of the dietary treatment (Figure 10). Moreover, supplementation of D-glucose 0.5 hr or 2.5 hr prior to seizure testing in the drinking water of restricted KC mice resulted in a marked increase in the seizure susceptibility of these mice compared to the seizure susceptibility of the KC-R mice (Figure 10). More importantly, supplementation of glucose 2.5 hr prior to seizure testing increased seizure susceptibility to the same levels as that of the KC-UR group (Figure 10). Interestingly, supplementation of 50 mM β-hydroxybutyrate (given ad libitum daily) in the drinking water of another group of mice fed the KC-R diet did not result in a better anticonvulsant efficacy of the restricted KC diet alone (data not shown). These findings support our previous notion that the antiepileptic efficacy of the high fat ketogenic diet is best when given in restricted amounts and that seizure management in EL mice is dependent on a reduction of body weight and thus glucose levels. Furthermore, whereas glucose supplementation resulted in an increase of the seizure susceptibility, administration of KC in unrestricted amounts reduced seizure susceptibility in young EL mice. This latter finding might suggest that unrestricted KC reduces the influence of Gower’s dictum, that “seizures beget seizures”, in the seizure susceptibility of EL mice.

Influence of KC on Plasma Glucose and β-Hydroxybutyrate Levels
Plasma and ketone body levels were analyzed every three weeks during the diet treatment period. Plasma glucose levels were similar in both UR-fed mouse groups and remained relatively high throughout the study (Figure 12). Contrary to that, glucose levels were significantly lower in the KC-R group compared to either unrestricted group (Figure 12). Supplementation of glucose had no effect on the glucose levels of the KC-R mice (Figure 12). In contrast to glucose, circulating β-hydroxybutyrate levels were significantly different in the KC-UR group compared to the SD-UR mice throughout the study (Figure 13). Interestingly, this marked increase of ketone levels in the KC-UR was evident by the third week of dietary treatment (data not shown). As previously shown, ketone levels in the SD-UR group remained low and were stable for the duration of the experiment. Similar to the effect in glucose levels, supplementation of glucose had no effect on the ketone levels of the KC-R mice (Figure 13). Interestingly, *ad libitum* supplementation of 50 mM β-hydroxybutyrate in the drinking water of another group of mice fed the KC-R diet resulted in similar glucose and ketone levels as in the three KC-R groups (data not shown). These findings are consistent with our previous studies in mice showing that the high fat KD does not lower plasma glucose levels when administered in unrestricted amounts and that a transition from the glucose to ketone bodies for energy underlies the anticonvulsant and antiepileptic effects of the KD and that of calorie restriction.
DISCUSSION

Our current findings demonstrate that KetoCal ® (KC), a new nutritionally balanced soy oil-based high fat, low carbohydrate KD, has both antiepileptic and anticonvulsant properties in reducing seizure susceptibility in young adult EL mice. This neuroprotection was associated more with the amount rather than the origin of dietary calories. These observations are consistent with the already known neuroprotective properties of the traditional KD (Gasior et al., 2006; Freeman et al., 2007; Seyfried et al., 2009b). Despite recent findings indicating a distinct increase of seizure threshold in a pentylenetetrazol (PTZ)-induced seizure rat model by KC (Raffo et al., 2008), no prior studies have evaluated the therapeutic efficacy of KC in a natural model of epilepsy, such as the EL mouse. Most of the studies involving the study of the antiepileptic mechanism(s) of the KD have been based on acute seizure models (e.g. PTZ and kainic acid), and not on developmental natural epilepsy models (Bough and Rho, 2007). Since, those models may not recapitulate all essential features of the human epileptic condition (Stafstrom, 1999), the need of studying the therapeutic efficacy of the KD in natural model of epilepsy is further validated.
Consistent with our previous findings that CR is important in the seizure control of EL mice, our current results show that the anticonvulsant efficacy of KC is best when given in restricted amounts (Mantis et al., 2004; Seyfried et al., 2009b). Also as previously found, this anticonvulsant effect of KC was associated with a significant reduction in circulating plasma glucose levels and a subsequent elevation of ketone body levels (Mantis et al., 2004; Seyfried et al., 2009b). The aforementioned findings are in accordance with clinical studies, which indicate that the antiepileptic and anticonvulsant efficacy of the traditional KD is best when the diet is administered in restricted amounts and is associated with body weight and blood glucose reductions of about 10% (Livingston, 1972; Freeman et al., 2000; Freeman et al., 2007; Seyfried et al., 2009b). Recent findings have also shown a restricted KC to have both anti-tumor and anti-angiogenic effects in experimental mouse and human brain tumors mainly due to a reduction of total caloric content and circulating glucose (Zhou et al., 2007; Seyfried et al., 2008a).

Interestingly we show for the first time that an unrestricted KD is able to reduce seizure severity and frequency without a corresponding reduction in body weight or circulating glucose levels. Nevertheless, this reduced epileptogenicity in the KC-UR group was correlated with an elevation in plasma ketone (β-hydroxybutyrate) levels compared to the levels of the SD-UR mice. This is important, since it was initially thought that the antiepileptic action of the KD was largely due to ketosis, a phenomenon also observed both in fasted humans
(Wilder, 1921; Peterman, 1928; Lennox, 1960; Freeman et al., 2000) and in animal models fed the KD (DeVivo et al., 1978; Bough and Eagles, 1999; Eagles et al., 2003). During states of reduced glucose availability brain cells can transition from glucose to ketone bodies for energy (Owen et al., 1983; Greene et al., 2003; Mantis et al., 2004; Seyfried et al., 2009b). However, ketone utilization by the brain is dependent not only on plasma ketone levels, but also the levels of circulating glucose and other metabolites (Nehlig and Pereira de Vasconcelos, 1993). Hence, although the persisted high glucose levels observed in the KC-UR group may prevent the complete transition to ketone metabolism, it is clear that some degree of sustained ketosis is needed for the therapeutic efficacy of the KD. Furthermore, ketone bodies alone, especially acetoacetate and acetone, have also been shown to be anticonvulsant in both humans and various animal models (Helmholz and Keith, 1930; Yamashita et al., 1976; Rho et al., 2002; Likhodii et al., 2003; Bough and Rho, 2007).

The reduced seizure threshold of the KC-UR group can also be explained in part by a similar transient antiepileptogenic effect as seen in young (32 days old) seizure naïve EL mice fed with the lard-based KD in unrestricted amounts (Todorova et al., 2000). Specifically, we showed that the KD delayed epileptogenesis in young EL mice without affecting glucose levels (Todorova et al., 2000). It is known that seizures in the EL mice commence with the onset of sexual maturity (60-75 days of age) and progressively get worse with age (model Gower’s dictum) (Suzuki et al., 1991; Kasamo et al., 1992; Ishida et al., 1993;
Todorova et al., 1999a; Uchibori et al., 2002). While Gowers’ dictum, “seizures beget seizures”, stipulates that the incidence and severity of future seizures depends on the incidence and severity of any previous seizure (Gowers, 1901; Todorova et al., 1999a; Pitkanen and Sutula, 2002; Stafstrom and Sutula, 2005), administration of KC in this critical stage of seizure development and progression (mice were fed KC starting at about 80 days of age) reduces the influence of Gower’s dictum on EL seizure susceptibility. Furthermore, with the emergence of recent clinical evidence suggesting that the KD has both short- and long-term efficacy (Freeman, 2001; Hemingway et al., 2001; Marsh et al., 2006; Kossoff and Rho, 2009), it becomes even more apparent that although the KD has a dual anticonvulsant and antiepileptogenic effect, its potential mechanism(s) of action may vary.

Glucose supplementation, prior to seizure testing, resulted in an increase of seizure susceptibility in young adult EL mice fed a calorically restricted regimen. Although, the reduction in seizure susceptibility was independent of any changes in glucose or ketone levels, this finding is consistent with previous reports. Specifically, supplementation of glucosamine, a carbohydrate analog, resulted in no net change in fasted blood glucose levels (Tannis et al., 2004). Also as seen with the influence of glucose ingestion after prolonged exercise in glucose absorption kinetics (Jeukendrup et al., 1999b; Jeukendrup et al., 1999a; Vannucci and Vannucci, 2000), supplementing glucose in R-fed EL mice will too result in a rapid clearance of circulating glucose for energy metabolism or seizure
induction. Neuronal excitability and epileptic seizures are directly related to rapid glucose utilization and glycolysis (McIlwain, 1969; Ackermann and Lear, 1989; Meric et al., 1994; Clarke and Sokoloff, 1999; Meldrum and Chapman, 1999; Cornford et al., 2000; Knowlton et al., 2002; Ikemoto et al., 2003; Schwechter et al., 2003).

Furthermore, supplementation of calories in the form of carbohydrate or protein in energy-restricted KD animals usually translates in diminished anticonvulsant efficacy due to an increase in the pool of metabolic substrates for gluconeogenesis (Appleton and DeVivo, 1974; Huttenlocher, 1976; Bough and Rho, 2007; Freeman et al., 2007). Thus to confirm the role of glucose in seizure susceptibility, in a follow up study, previously seizure controlled R-fed EL mice were reverted back to ad libitum conditions. Our findings indicate that re-feeding of either the SD or the KD in previously R-fed EL mice resulted in a progressive reduction of the anticonvulsant effects of CR (data not shown). Specifically, we showed that seizure susceptibility in the re-fed restricted mice returned by the fourth week of ad libitum feeding. This finding is in accordance with our previous findings in C57BL/6J mice, suggesting that CR was able to establish a new homeostatic state for mice (Mahoney et al., 2006). Surprisingly, although body weight returned to pre-restricted levels within a week of re-feeding, glucose and ketone levels returned to pre-restricted levels more gradually (data not shown). This latter finding is also consistent with the findings of Lennox et al., 1928, where the return of seizures after termination of fasting were often associated
with rising blood glucose levels and falling blood ketone levels (Lennox and Cobb, 1928; Seyfried et al., 2009b). Interestingly, in a clinical setting breakthrough seizures are believed to also result from a rise in blood glucose levels, as evident with the loss of the anticonvulsant effect of the KD in patients who gain weight on the KD or those who consume excess carbohydrates (e.g. “sneak” a cookie) (Huttenlocher, 1976; Freeman et al., 2000; Freeman et al., 2007).

Although the exact neuroprotective mechanism of the KD still eludes us, it is thought to result from a combination of the reduction in metabolite availability, oxidative damage, the increase in glutathione antioxidant properties, mitochondrial biogenesis, increased cerebral ATP and phosphocreatine levels, as well as an increase in GABA levels (Cheng et al., 2003; Ziegler et al., 2003; Cheng et al., 2004; Sullivan et al., 2004; Dahlin et al., 2005; Yudkoff et al., 2005; Bough et al., 2006; Seyfried et al., 2009b). Hence, the neuroprotective effect of CR or the KD may be in large due to adaptations to ketosis rather than ketosis directly influencing the therapeutic efficacy of those diets (Bough and Rho, 2007).

In conclusion, our results indicate that KC alone has both anticonvulsant and antiepileptic properties and that CR underlies the neuroprotective action of KC in EL mice. Interestingly, supplementation of glucose decreases the anticonvulsant action of the KD, without affecting restricted glucose and ketone levels. A further detailed biochemical and molecular analysis of the
anticonvulsant and antiepileptogenic mechanism of KetoCal® is shown in Chapter 6.
Figure 9. Influence of the High Fat Soybean-oil KC Diet on Body Weight in Young Adult EL Mice. Asterisks indicate that the body weight of all KC-R groups was significantly lower compared to the body of the KC-UR mouse group ($P < 0.001$). Body weight was similar between the two UR groups. A. Values are expressed as the mean ± SEM for the duration of the study including the pre-trial period (weeks 0-9) ($n = 8-10$ mice per group). Arrow indicates initiation of the dietary treatment; B. Values are expressed as the mean ± SEM for the duration of weeks 3-9 of the dietary treatment period ($n = 8-10$ mice per group).
Figure 10. Influence of the KC Diet on Seizure Susceptibility in Young Adult EL Mice. Double asterisks indicate that seizure susceptibility in the KC-R and KC-R + 0.5hr [Glu] groups were significantly lower compared to the KC-UR mouse group ($P < 0.001$). Double cross indicates that seizure susceptibility in the KC-UR group was significantly lower compared to the SD-UR group ($P < 0.001$). Asterisks indicate that the seizure susceptibility of the KC-R + 0.5hr [Glu] and KC-R + 2.5hr [Glu] groups were significantly higher compared to the KC-R group ($P < 0.02$). Other conditions are as in Figure 9.
Seizure Susceptibility

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Seizure Susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-UR</td>
<td>1.2 ± 0.1</td>
</tr>
<tr>
<td>KC-UR</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>KC-R</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>KC-R .5hr[Glu]</td>
<td>0.8 ± 0.1</td>
</tr>
<tr>
<td>KC-R 2.5hr[Glu]</td>
<td>1.0 ± 0.1</td>
</tr>
</tbody>
</table>

Significance:

- †: P < 0.01
- **: P < 0.05
- *: P < 0.01

Note: The values represent the average seizure susceptibility with standard error bars.
Figure 11. Comparative Analysis of the Influence of the KC Diet on the Seizure Susceptibility in Young Adult EL Mice on Weeks 0 and 9 of the Study. Asterisk indicates that at week 9 of the study seizure susceptibility of the SD-UR group was significantly higher than that at the beginning of the diet treatment ($P < 0.05$). No increase in seizure frequency was observed in the KC-UR group at the end of the study. Other conditions are as in Figure 9.
Seizure Susceptibility

- SD-UR
- KC-UR

Week 0
Week 9

* Indicates significant difference.
Figure 12. Influence of the KC Diet on Plasma Glucose Levels in Young Adult EL Mice. Asterisks indicate that plasma glucose levels in all KC-R groups were significantly lower compared to the KC-UR mouse group ($P < 0.001$). Other conditions are as in Figure 9.
Figure 13. Influence of the KC Diet on Plasma $\beta$-Hydroxybutyrate Levels in Young Adult EL Mice. Asterisks indicate that plasma $\beta$-hydroxybutyrate levels in all KC-R groups were significantly higher compared to the KC-UR mouse group ($P < 0.001$). Double cross indicates that plasma $\beta$-hydroxybutyrate levels in the KC-UR group was significantly higher than that of the SD-UR mouse group ($P < 0.001$). Other conditions are as in Figure 9.
CHAPTER FOUR

Improvement of Motor and Exploratory Behavior in Rett Syndrome Mice with Restricted Ketogenic and Standard Diets

INTRODUCTION

Rett Syndrome

Rett syndrome (RTT) is an X-linked dominant neurodevelopmental disorder that affects about 1 in 9,000 girls (Bebbington et al., 2008). Girls with RTT develop normally for about 6-18 months after birth before exhibiting signs of speech and behavioral regression in addition to progressive motor impairment (Guy et al., 2001; Zoghbi, 2002; Williamson and Christodoulou, 2006). Many symptoms of RTT are age dependent and include hand wringing, reduced muscle tonicity, anxiety, microencephaly, indications of mental retardation, and seizures, among other autistic-like behaviors (Witt Engerstrom, 1992; Mount et al., 2001; Mount et al., 2003; Jian et al., 2007). Although RTT patients show abnormal neuronal morphology, no neuronal loss is evident. The relatively low incidence of RTT in humans often results from misdiagnosis of the disorder as autism or, to a lesser extent, as Angelman syndrome (Jedele, 2007).

About 80% of girls with RTT have a mutation in the Mecp2 (Methyl-CpG-binding protein 2) gene (Renieri et al., 2003; Percy and Lane, 2005; Zoghbi,
which encodes a protein involved with transcriptional regulation, and more specifically with histone deacetylation and methylation-dependent gene silencing (Amir et al., 1999; Percy, 2002; Shahbazian et al., 2002b). Males with mutations in the \textit{Mecp2} gene often die before birth or in infancy due to severe neonatal encephalopathy (Wan et al., 1999). A small number of males with a \textit{Mecp2} mutation, however, have developed signs and symptoms similar to those of classic Rett syndrome (Villard et al., 2000; Dayer et al., 2007; Villard, 2007). Some of these boys have an extra X chromosome in many or all of the body's cells. Several mouse \textit{Mecp2} gene mutants have been generated including a partially truncated form of the MeCP2 protein (\textit{Mecp2}\textsuperscript{308/y}) that is commonly found in girls with RTT (Chen et al., 2001; Guy et al., 2001; Shahbazian et al., 2002a). In contrast to humans, male Rett mice exhibit the classical RTT phenotype much earlier in life than female mice, and thus are predominately used for animal studies. Importantly, \textit{Mecp2}\textsuperscript{308/y} mice exhibit several symptoms associated with RTT in humans, to include behavioral abnormalities and impaired social interactions (Chen et al., 2001; Guy et al., 2001; Shahbazian et al., 2002a; Moretti et al., 2005; Moretti et al., 2006). More specifically, around 6 weeks of age \textit{Mecp2}\textsuperscript{308/y} mice begin to display learning and memory deficits that are indicative of synaptic dysfunction as well as other symptoms of RTT progression. The RTT phenotype in the female \textit{Mecp2} mice is milder and shows greater variability, presumable due to differences in the pattern of X chromosome inactivation (Young and Zoghbi, 2004; Metcalf et al., 2006). Skewed X-
inactivation is also believed to be responsible for the mild and hardly recognizable RTT phenotype in girls with RTT (Huppke et al., 2006; Takahashi et al., 2008).

RTT children are generally smaller than normal children and these differences become increasingly exaggerated over time (Oddy et al., 2007). Girls with RTT tend to be disinterested in social interactions and are often emotionally withdrawn (Thommessen et al., 1992). They also have elevated circulating levels of pyruvate, lactate, and glucose, which could be indicative of an abnormal metabolic phenotype (Haas et al., 1986; Haas et al., 1995a; Haas et al., 1995b). Interestingly, MeCP2-null mice also have reduced levels of brain glutamine, glutamate, choline, N-acetyl aspartate, and ATP, further indicating that RTT could be associated with abnormal neuronal and glial cell metabolism (Saywell et al., 2006; Ward et al., 2009). These findings, viewed together, indicate that abnormal energy metabolism may contribute to the growth failure associated with RTT, and also suggest that diet therapies, and in particular restricted diet could help delay the onset or at least mitigate severity of the RTT phenotype (Rice and Haas, 1988; Motil et al., 1994; Reilly and Cass, 2001; Oddy et al., 2007). This hypothesis has been confirmed in (some) girls with RTT who demonstrated modest improvements in behavior and motor performance when maintained on a ketogenic diet (Haas et al., 1986; Liebhaber et al., 2003).

Diet Therapies in the Treatment of Autism
The ketogenic diet (KD), as previously described, is a high fat, low carbohydrate diet that has been shown to have antiepileptic, anticonvulsant, and other neuroprotective effects in both rodents and humans (Mantis et al., 2004; Seyfried et al., 2004; Freeman et al., 2007; Hartman et al., 2007; Hartman and Vining, 2007; Baranano and Hartman, 2008; Maalouf and Rho, 2008). We previously showed that although an unrestricted KD could delay the onset of seizures in EL mice with a genetic predisposition to epileptic seizures (Todorova et al., 2000), greater seizure control could be achieved in these mice when fed a calorically restricted KD (KD-R) (Mantis et al., 2004) (see also Chapter 2 for additional information). Interestingly, the KD has been shown to positively influence the behavior of autistic children (Evangeliou et al., 2003), and produce metabolic alterations in the brain and in the body that enhance energy expenditure and ultimately reduce body weight (Kennedy et al., 2007). Similarly to the KD, calorie restriction (CR) is a natural dietary therapy that too has long been recognized to improve health, promote longevity, and to reduce the incidence as well as delay the onset and/or severity of symptoms associated with a variety of neurochemical and neurobehavioral disorders, including epilepsy (Weindruch and Walford, 1988; Greene et al., 2001; Greene et al., 2003; Mantis et al., 2004; Maswood et al., 2004; Halagappa et al., 2007; Seyfried et al., 2009b). These latter findings suggest that a KD-R has a greater neuroprotective
effect than an unrestricted KD, at least in rodent models of epilepsy (Mantis et al., 2004).

Thus, in light of the evidence described above, in this study we evaluated whether CR could have a positive influence on the anxiety behavior and motor characteristics of a mouse model of RTT. Our preliminary results indicate that calorically restricted diets can be of clinical importance since CR improved symptoms of behavioral abnormalities in Rett mice, particularly with respect to reduced anxiety involving exploratory activity within an unfamiliar environment. A report of these findings was recently presented (Mantis et al., 2009).

MATERIALS AND METHODS

Mice

The inbred B6.129S-\(Mecp2^{tm1Hzo/J}\) (\(Mecp2^{308/y}\)) Rett mice were originally obtained from JAX laboratories (Maine). Mice were generated as previously described by Shahbazian et al., 2002 (Shahbazian et al., 2002a). The mice were maintained through brother-sister inbreeding and kept in the Animal Care Facility of Boston College with all procedures in strict adherence with the NIH Guide for the Care and Use of Laboratory animals and approved by the Institutional Animal Care Committee. The mice were group housed (prior to initiation of study) in
plastic cages with Sani-chip bedding (P.J. Murphy Forest Products Corp., Montville, N.J.) and kept on a 12-hr light/dark cycle at approximately 22°C. Cotton nesting pads were provided for warmth when animals were individually housed. All cages and water bottles were changed once per week. Only males were used for these studies since female Rett mice have a less severe disease phenotype (Shahbazian et al., 2002a).

Genotyping Rett Mice

DNA from 30-day old Rett mice was isolated from ~3 mm of tail using the Qiagen DNeasy tail tissue protocol. The PCR reaction was set up similar to that of the JAX genotype protocol for the $\text{Mecp}^2_{308/y}$ mice with the following modifications as previously described (Seyfried et al., 2008b). Briefly, 1 μL of DNA (~50-100 ng) was amplified with 5 μL of 5X Buffer, 0.5 μL dNTPs, 5 μL Forward primer (10 mM), 2.5 μL AR Primer (10 mM), 2.5 μL BR primer (10 mM), 0.25 μL GoTaq DNA Polymerase (Promega) and 8.25 μL water for a 25 μL total reaction volume. The DNA PCR amplification protocol used was: 94°C for 2 min, followed by 31 cycles of 94°C for 45 sec; 62°C for 45 sec; and 72°C for 45 sec, with a final extension at 72°C for 5 min following the last cycle. The forward and AR primer set amplified a 396 bp fragment from the wild-type allele, whereas the forward and BR primer set amplified a 318 bp fragment from the knockout allele.
PCR products (5–15 µL) were separated on 1% agarose gels containing ethidium bromide, visualized with UV light.

**Diets**

All mice were fed SD prior to experimentation (see Chapters 2 and 3 for additional information on diet composition). Briefly, the SD is a nutrient balanced low fat, high carbohydrate diet that delivers 4.1 kcal/g of gross energy (Mantis et al., 2004), whereas the KetoCal® diet (KC) is a nutrient balanced soy oil-based high fat, low carbohydrate KD diet that delivers 7.2 kcal/g of gross energy and has a ketogenic ratio (fats: proteins + carbohydrates) of 4:1 (Zhou et al., 2007). KC was used in this current study because it is a more palatable form of the KD. The feeding regime for the SD-R and the KC-R mice was previously described (Mantis et al., 2004; Zhou et al., 2007). Briefly both the SD and KC diets are calorie restricted to reduce mouse body weights by 20-23%. Water was provided *ad libitum* to all mice throughout the study. The energetic composition of the SD and the KC diets is shown in Table 3.

**Pre-Trial Testing Period for Rett Mice**

12 wild-type *Mecp2<sup>+/y</sup>* (control) and 18 *Mecp2<sup>308/y</sup>* (Rett) mice (188 days of age) were selected for the study and were individually housed for an 11-day pre-
trial period. Young adult symptomatic male MeCP2 mice were selected in contrast to female MeCP2 mice because of the greater degree of RTT phenotypic similarities of the male MeCP2 mice to RTT children. All mice were fed the SD ad libitum during the pre-trial period and the daily food intake of each mouse was determined (Mantis et al., 2004). This pre-trial period was used to establish baseline physiological (metabolism) and behavioral (motor coordination, proprioception, and exploration) parameters for each mouse. The experimental protocol for each behavioral test used is summarized below.

Testing Battery

All behavioral testing was conducted before body weights or food/water intakes were determined for each mouse. Only one behavioral test was performed on a given mouse in a given day. The following behavioral tests sensitive to motor and sensory function were employed: 1) grip strength, 2) incline latency, 3) righting reflex, 4) visual placing, 5) light-dark compartment, 6) rotorod, and 7) open-field.

1) The grip strength test examined defects in motor neurodevelopment related to muscle strength (Meyer et al., 1979). The test was performed in triplicate with 60 sec being the maximum allowable time for mice to grab/hold with their forelimbs and/or hindlimbs onto a wire suspended two
feet above a soft, padded surface. Only the maximum grab/hold time for a mouse to accomplish the task was considered for statistical analysis.

2) The incline latency test (negative geotaxis) was performed to examine proprioceptive neurodevelopment and the ability to sense gravitational forces (Pryor et al., 1983). The test was performed in triplicate with 60 sec being the maximum allowable time for mice to reorient themselves 180° (head facing upward) after being placed head facing downward on a soft, high friction surface with a negative 40° from horizontal slope. Only the maximum time for a mouse to accomplish the task was considered for statistical analysis.

3) The righting latency test was also performed to examine proprioceptive neurodevelopment necessary to restore the body to an upright spatial position (Fox, 1965). The test was performed one time unless a mouse demonstrated a reduced ability to turn over onto its belly (position itself in an upright position - all 4 limbs) after being placed gently on its back atop a flat padded surface. Only the maximum time for a mouse to accomplish the task (60 sec trial) was considered for statistical analysis.

4) The placing latency test examined neurodevelopmental defects in visual proprioception necessary to see and grasp an approaching solid
surface. Mice were lifted gently by the tail, suspended briefly in mid-air, and then lowered slowly towards the edge of a table/mouse cage rack that mice were able to reach by extending their forelimbs. The test was performed one time unless a mouse demonstrated a reduced ability to grab/extend forelimbs towards an edge 2-3 cm away. Only the maximum time for a mouse to accomplish the task (60 sec trial) was considered for statistical analysis.

5) The light-dark latency test examined anxiety and the propensity of a mouse to explore a novel environment (Crawley et al., 1997; Crawley, 1999; Bourin and Hascoet, 2003). The test was performed one time for each mouse. The testing apparatus consisted of two compartments: a dark compartment and a light compartment. The dark compartment, a standard mouse cage covered with a solid box, served as the control environment and the light compartment, an uncovered mouse cage, served as the novel environment. The mouse was initially placed in the dark compartment and was allowed to move freely between the light and dark compartments. The length of time that it took for a mouse to completely enter the lighted compartment, the amount of time that the mouse spent in the lighted compartment, and the total number of times that the mouse entered and exited this compartment were considered for statistical analysis. Each test lasted for 5 min.
6) The rotorod test examined defects in mouse motor neurodevelopment related to coordination and balance (Crawley, 2007). The test was performed in duplicate at four different speeds (20, 30, 40, and 60 rpm) with 60 sec being the maximum allowable time for mice to stay on a rotating bar/rough edge cylinder positioned over mouse bedding. Mice were allowed to rest for 30 sec between trials at the same speed, and for 2 min between trials at different speeds. The average length of time that a mouse remained on the bar for a given speed was considered for statistical analysis.

7) The open field test examined defects in mouse locomotor/exploratory activity, anxiety, and rearing events using the SmartFrame Cage Rack System (Kinder Scientific, San Diego, CA) (Crawley and Paylor, 1997; Paylor et al., 1998). Photobeams along the frame of the system track mouse movement within the cage and register mouse location, distance, and rearing capabilities. A mouse was placed in the center of the open-field apparatus and behavior was measured for 15 min. The data were analyzed using the MotorMonitor software (Kinder Scientific, San Diego, CA). Locomotor activity was measured as the total distance traveled in either the center or in the periphery (in cm), as well as the basic (all horizontal beam breaks) and fine (a change in a single beam while all
other beams remain unchanged – e.g. grooming and/or head activities) movements the mouse performed during the 15-min period. Rearing events were measured as the number of times the mouse stood on its hind legs. Anxiety was measured as the degree of avoidance the mouse showed in exploring the center of the apparatus (number of entries in the center).

**Dietary Regimen**

On the 11th day of the pre-trial period, the mice were separated into the following diet groups: 1) a wild-type (Mecp2^{+/y}) mouse group fed the standard diet ad libitum or unrestricted (SD-UR), 2) a wild-type mouse group fed the KetoCal® diet restricted (KC-R), 3) a wild-type mouse group fed the standard diet restricted (SD-R), 4) a Rett (Mecp2^{308/y}) mouse group fed the SD-UR diet, 5) a Rett mouse group fed the KC-R diet, and 6) a Rett mouse group fed the SD-R diet. Mice in each of the wild-type mouse groups were matched for body weight (29.5 ± 1.7 g), as were the mice in each of the Rett mouse groups (30.5 ± 1.5 g). All mice were then fasted for 17 hours before the diets were initiated in order to establish a similar metabolic starting point. The feeding regime for all KC-R and SD-R group mice was designed to reduce mouse body weights by 20-23% compared to each mouse's individual pre-trial body weight as we previously described (Mantis et al., 2004; Zhou et al., 2007). The recommended body weight reduction was
achieved and maintained during the dietary treatment period by adjusting the food intake of the R-fed mice every three days. Mice in the SD-UR groups were provided with ~200 g of fresh SD food pellets on a weekly basis. The body weights and food intakes of all mice were measured every three days. No KC-UR groups were included in these studies because this particular feeding regimen was not found to be neuroprotective in mouse models of brain cancer (Zhou et al., 2007), nor was the KD-UR found as effective as the KD-R in reducing seizure frequency in a mouse model of epilepsy (Mantis et al., 2004). At the end of the dietary treatment period the same battery of behavioral tests was performed for each mouse to evaluate the effect of the diet on the behavior of these mice.

Statistical Analysis

Both ANOVA and a two-tailed $t$ test were used to evaluate the significance of differences of body weight, and each behavioral parameter between unrestricted and restricted groups (SPSS software). Differences were considered significant at $P \leq 0.05$. The three-way mixed factor ANOVA statistical analysis was also performed to verify any significant effect between the diet, the mice, and the performance of the mice on the various rotorod speeds and the open-field. All values are expressed as mean ± SEM. All statistical data were
presented according to the recommendations of Lang et al. (Lang and Secic, 1997).

RESULTS

Influence of Diet on Behavior

All mice were tested prior to the initiation of the dietary treatment period (see Methods) in order to establish baseline information pertaining to their behavioral features. At the end of the one-month dietary treatment period, all mice from each of the six groups were subjected to the same battery of behavioral tests to evaluate the effects of the calorically restricted KC diet or the restricted SD on their behavior. Consistent with the well-recognized health benefits of mild to moderate calorie restriction in rodents, no adverse effects were observed in either mouse group fed a calorically restricted diet. Despite a 20–23% body weight reduction, all R-fed mice appeared healthy and more active than mice in the groups fed *ad libitum*, as assessed by ambulatory and grooming behavior. Furthermore, nesting behavior was similar for all dietary groups (empirical observation). It is important to mention that no epileptic seizures were observed throughout this study in the Rett mice.
Influence of Diet on Body Weight and Food Intake

All Rett (Mecp2\textsuperscript{308/y}) and wild-type (Mecp2\textsuperscript{+/y}) mouse groups were matched for age (~ 199 days) and body weight at the beginning of the dietary treatment period. The average daily food intakes for the wild-type and Rett groups over the pre-trial period were 4.2 and 4.6 g, respectively. All mice lost approximately 8-13% body weight over the course of the 17-hour fast at the beginning of the treatment period. Mice in both the KC-R and the SD-R groups achieved the desired 20-23% reduction in body weight within 2-3 weeks of the initiation of dietary treatment (Figure 14). The degree of CR needed to maintain the 20-23% body weight reduction was approximately 50%. No significant differences in body weight were observed between the wild-type (29.3 g) and the Rett (30.0 g) SD-UR mouse groups (Figure 14).

Influence of Diet on Grip Strength

The grip strength test was used to distinguish motor neurodevelopment deficits between the Rett mice and the wild-type control mice. The suspension time was significantly less in the Rett SD-UR mice (16.7 sec) than in the control SD-UR mice (47.5 sec) (Figure 15). Restriction of the KC diet or the SD did not improve the performance of the Rett mice on the wire (21.9 and 23.7 sec, respectively) compared to the Rett mice fed SD-UR (Figure 15). Moreover, CR
of either diet had no effect in improving performance of wild-type mice on the grip strength test. These findings indicate that the Rett mice have a motor deficit and that restriction of either the KC or the SD diet does not improve this Rett phenotype.

Influence of Diet on Incline Latency

The incline latency test measured the ability of a mouse to orient (face upward) itself against gravitational forces when placed facing downward on a negative 40° slope. No significant differences in the incline latency to face upwards were observed between the wild-type (40.2 sec) and the Rett (41.4 sec) SD-UR mouse groups (Figure 16). The incline latency of both KC-R mouse groups was significantly reduced relative to their respective SD-UR groups (Figure 16). In addition, the latency of the wild-type SD-R mouse group was significantly reduced compared to the Rett SD-UR mouse group. Although, CR of the SD had no significant effect ($P = 0.058$) in improving the incline latency in the Rett mice (Figure 16), a definite trend of improved behavior is evident in these mice as well. These findings suggest that restriction of either the KC or the SD diet improves overall reorientation (face upwards) to negative geotaxis.

Influence of Diet on Righting Reflex
The righting reflex test was used to measure each mouse’s proprioception and reflex response to revert back on its four limbs after being placed on its back. No differences were found between the Rett and wild-type mice (all mice performed the task within 0-2 sec). In addition, restriction of KC or the SD had no effect on this behavior (data not shown).

**Influence of Diet on Visual Placing**

The visual placing test was used to measure the visual proprioception of the Rett mice. No differences were found between the Rett and wild-type mice (all mice performed the task within 0-2 sec). In addition, restriction of KC or the SD had no effect on this behavior (data not shown).

**Influence of Diet on the Light-Dark Compartment Test**

The light-dark compartment test was used to measure the ability or tendency of the mice to explore a novel environment. Rett mice significantly underperformed in their ability to emerge from the dark or stay in the lighted compartment (Figures 17 and 18). The emergence from dark to the light of the wild-type SD-UR mouse group (98.0 sec) was significantly earlier than in the Rett SD-UR mouse group (289.6 sec) (Figure 17). In addition, the time spent in the light was significantly longer in the wild-type SD-UR mice (64.2 sec) than in the
Rett SD-UR mice (2.6 sec) (Figure 18). Restriction of either KC or SD significantly improved the emergence time into the light and the total time in the light of the Rett mice compared to their respective Rett SD-UR mice (Figures 17 and 18). Furthermore, CR of the SD increased the total time the wild-type mice spent in the light compared to their respective wild-type SD-UR mice (Figure 18). The transition frequency between the two compartments was significantly greater in the wild-type SD-UR mice than in the Rett mice fed the SD-UR (Table 6). Restriction of the SD significantly increased the transition frequency between the light and dark compartments for both the Rett and the wild-type mice (Table 6). It is important to mention that although the restricted KC diet moderately increased the number of transitions between the two compartments in both the wild-type and Rett mouse groups, these differences were statistically significant only for the Rett mice (Table 6). Overall, these findings suggest that the Rett mice have an exploratory deficit and that restriction of either the KC or the SD diet reduces that deficit by increasing the activity of the Rett mice compared to Rett mice fed the SD unrestricted.

**Influence of Diet on Rotorod Performance**

The rotorod was used to measure motor development, coordination, and balance in the Rett mice. At the three lower speeds (20, 30, and 40 rpm), the performance in the Rett SD-UR mice was significantly worse than in the wild-type
SD-UR mice (Table 7). Restriction of KC did not increase the time the mice spent on the bar (Table 7). On the other hand, restriction of the SD significantly increased the time that the Rett mice spent on the bar compared to the Rett SD-UR mice (Table 7). No significant differences were found between the four groups in the rotorod performance at 60 rpm. The three-way mixed ANOVA test further verified that the Rett SD-UR mice significantly unperformed on the rotorod compared to the wild-type SD-UR mice; however, the restricted KC diet had no significant effect on the rotorod performance. These findings indicate that the Rett mice have a motor coordination/balance deficit. Although, the restricted KC diet had no effect on improving this deficit, the restricted SD was able to do improve the time the Rett mice spent on the bar.

Influence of Diet on Open-Field Performance

The open-field test was performed to measure motor defects in locomotor activity and rearing events in the Rett mice during a 15 min testing period. No significant differences were observed between the Rett SD-UR mice and the wild-type SD-UR mice in all the behavioral parameters we measured (Table 8). Total time and rest time in each zone (center and periphery) was also similar between Rett and the wild-type mice (data not shown). The restricted KC diet significantly increased the number of entries in the center and the periphery of the open-field apparatus as well as the number of rearing events in the Rett mice.
compared to the Rett mice fed the SD-UR (Table 8). Furthermore, the restricted KC diet significantly increased all behavioral parameters measured in the wild-type mice compared to the wild-type mice fed the SD-UR (Table 8). Restriction of the SD also improved both the number of entries in the center and in the periphery of the open-field apparatus as well as the number of rearing events of the wild-type mice compared to the wild-type mice fed the SD-UR (Table 8). Although the average total distance traveled in the center of the open-field apparatus by the wild-type SD-R mice was greater than that traveled by the wild-type SD-UR mice, this difference did not reach a statistical significance ($P = 0.058$) (Table 8). Furthermore, although restriction of either diet significantly increased the basic movement in all R-fed groups compared to respective UR-fed mice, fine movement was not significant different (data not shown). These findings indicate that the locomotor activity is similar in normal and Rett mice and that restriction of either the KC or the SD diet increases the locomotor activity in mice.

DISCUSSION

Therapeutic diets, such as the KD, have been shown to have a wide range of neuroprotective effects (e.g. antiepileptic, anticonvulsant, antitumorigenic) in both humans and in rodent disease models (Seyfried et al., 2003; Mantis et al.,
2004; Veech, 2004; Gasior et al., 2006; Freeman et al., 2007; Hartman et al., 2007; Prins, 2008), as well as improve the behavior of some girls with RTT (Haas et al., 1986; Liebhaber et al., 2003). The KD can also positively influence the behavior of autistic children (Evangeliou et al., 2003), and can produce metabolic alterations in the brain and in the body that enhance energy expenditure and ultimately reduce body weight (Kennedy et al., 2007). A reduction of circulating glucose levels coupled with an elevation of circulating ketone body levels is thought to underlie the therapeutic effects of the KD (Greene et al., 2003; Mantis et al., 2004; Zhou et al., 2007). These neuroprotective effects of the KD suggest that a restricted KD could improve behavioral abnormalities and motor dysfunction in mouse models of RTT (Haas et al., 1986; Evangeliou et al., 2003; Liebhaber et al., 2003; Mantis et al., 2004; Seyfried et al., 2004). Our current findings support our prior evidence that the neuroprotective effects of either the KD or that of CR stem primarily from a reduction in total calorie intake rather than caloric origin (e.g. from carbohydrates, protein, or fats) (Mantis et al., 2004; Denny et al., 2006). Administration of the KD in restricted amounts also reduces the adverse effects of the diet’s high fat content (e.g. weight gain, hypercholesterolemia, diabetes, kidney stones, and cardiovascular disease) if the diet were to be administered ad libitum for extended periods of time (Kang et al., 2004; Sampath et al., 2007; Marsh et al., 2008a). Hence, we considered a restricted KD to be more therapeutic for the management of behavioral
abnormalities in RTT mice than the unrestricted KD. This latter observation further supports our rational for omitting an unrestricted KetoCal® mouse group.

In agreement with the findings previously reported by Shahbazian et al., our results show that adult Rett (*Mecp2*<sup>308/y</sup>) mice are deficient in their ability to hang on a suspended wire or perform adequately on the rotorod motor test compared to control wild-type (*Mecp2*<sup>+/y</sup>) mice (Shahbazian et al., 2002a). In contrast, the performance of the Rett mice on the open-field test was not significantly different from that of the wild-type mice. Although this particular finding is not consistent with that previously observed (Shahbazian et al., 2002a), it is important to mention that the length of the testing period between the two open-field tests in the two studies was different, and could hence explain this discrepancy in our findings. More specifically, our test was performed for a total of 15 min, whereas Shahbazian et al. performed the test at 10 min intervals for a total of 30 min. In the aforementioned study, the performance of the Rett mice was not significantly different from the wild-type mice after 10 min, but differences were observed at the 20 and 30 min time points (Shahbazian et al., 2002a). Consistent with prior evidence that the *Mecp2*<sup>308/y</sup> mice display interaction deficiencies (Shahbazian et al., 2002a; Moretti et al., 2005), our findings from the light-dark latency test also suggest that *Mecp2*<sup>308/y</sup> mice express deficits in the exploration of a novel environment. The failure of the Rett mice to explore novel environments may reflect a heightened level of anxiety (Paylor et al., 1998). It is important to mention that the performance of the Rett SD-UR
mice on the light-dark compartment test is consistent with previous findings in rodents (Li and Quock, 2001, 2002; Blanco et al., 2009).

Previous studies showed that both CR and the KD increase the activity and exploratory behavior of rodents (Ziegler et al., 2005; Faulks et al., 2006). Our current findings in the Rett mice support these observations and suggest that CR underlies the mechanism of the increased activity observed in mice fed either the restricted KC or SD diets. Interestingly, we observed that calorie restricted Rett mice exhibited not only an increased ability or tendency to explore a novel environment (i.e. the light-dark paradigm test) but also an increased number of entries in the center of the open-field apparatus (i.e. the open-field test) as compared with Rett mice fed a SD-UR. These findings are consistent with prior evidence in rodents that CR increases the number of entries, and the total amount of time spent, in the center of the open-field apparatus (Geng et al., 2007; Levay et al., 2007). It is important to mention that both the light-dark test (the emergence time to the light and the total time spent in the lit environment) and the open-field test (the entry into the center of the open-field apparatus) are measures of anxiety (Paylor et al., 1998). Hence, these data suggest that restriction of either the KC, or the SD could reduce anxiety associated with the RTT phenotype. Furthermore, CR of either diet enhanced the performance of Rett mice on both the incline latency test (proprioception) as well as on the number of rearing events on open-field test (motor function) relative to Rett mice fed the SD-UR.
Although seizure susceptibility was assessed using our established handling induced seizure susceptibility protocol for the epileptic EL mice (Greene et al., 2001; Mantis et al., 2004); no myoclonic episodes were observed in the $\textit{Mecp}^{308/y}$ mice that we studied. Consequently, we are unable to determine if the restricted KD could reduce seizure susceptibility in Rett mice as was shown previously in girls with RTT (Haas et al., 1986; Liebhaber et al., 2003). As an aside, although nesting is a measure of home-cage activity related to both social behavior and motor function (Moretti et al., 2005), it is important to point out that neither the restricted KC diet nor the restricted SD was able to improve nesting behavior in the Rett mice (empirical observation). In general, R-fed mice spent significantly less time interacting with their nesting material compared to mice fed an unrestricted diet due to a persistent search for food. Thus, our data, viewed together, suggest the possibility that the increased activity observed in the Rett mice may be associated with increased hunger resulting from CR. Nevertheless, the restriction of either the KD or SD diet can be of clinical importance since the diet improved symptoms of certain behavioral abnormalities in Rett mice, particularly those with respect to reduced anxiety involving exploratory activity within a novel environment and the number of entries in the center of the open-field apparatus.

It seems likely that the beneficial effects of the KD in human patients with RTT are similar to those observed in Rett mice in the present study. Because girls with RTT are withdrawn emotionally and hesitant, and because the
restricted KD appeared to reduce some of the cautious tendencies in Rett mice, our results suggest that a restricted KD could be administered to help mitigate anxiety or fearfulness in females with RTT. Our results also suggest that the KD cannot, by itself, correct neurodevelopmental deficits associated with the RTT phenotype, but that it may help to confer emotional stability in RTT patients, thus leading to reduced anxiety, and increased activity and exploratory behavior. Furthermore, it is important to mention that since girls with Rett are smaller and have reduced body weights (Thommessen et al., 1992; Oddy et al., 2007); CR of any diet should be implemented with caution under a careful clinical supervision (Bhagavan, 2002; Crowe, 2005; Dirks and Leeuwenburgh, 2006).

Interestingly, supplementation of dietary choline increased N-acetyl aspartate levels; a marker of neuronal integrity, in young Mecp2-null mice (Mecp2^{1lox}) further suggests that nutritional supplementation may be therapeutic in improving neuronal function in girls with RTT (Nag and Berger-Sweeney, 2007; Ward et al., 2009). Finally, it is important to mention that alternative dietary therapies to the KD or CR, such as the Atkins diet, the Low-Glycemic-Index diet, or even a diet enriched with Omega-3 fatty acids, could also have a positive influence in the behavior of girls with Rett. Previous studies showed that both the Atkins and the Low-Glycemic-Index diet have similar effects to the KD and CR in reducing seizures in human patients with epilepsy (Pfeifer and Thiele, 2005; Kossoff et al., 2007), so it would be of interest to know whether those diets show similar results to what we found with the Rett mice.
In conclusion, our results demonstrate that CR of either the ketogenic diet or the standard diet could improve behavioral abnormalities in a mouse model of RTT, particularly by reducing anxiety associated with the exploration of an unfamiliar environment. Considering that we used adult Rett mice, which displayed the full spectrum of symptoms associated with RTT, it would be interesting to determine whether a restricted KD or SD diet could help to delay the onset or, at least, reduce the severity of motor and exploratory neurodevelopment deficits in juvenile Rett mice that have not yet become fully symptomatic.
Figure 14. Influence of Diet on Body Weight in $\text{Mecp2}^{+/y}$ and $\text{Mecp2}^{308/y}$ Mice. Asterisks indicate that the body weight of the R group mice was significantly lower ($P < 0.001$) than their respective SD-UR groups; $n = 4$ for all $\text{Mecp2}^{+/y}$ mouse groups, and for the $\text{Mecp2}^{308/y}$ SD-R group, whereas $n = 7$ for both $\text{Mecp2}^{308/y}$ (Rett) SD-UR and KC-R mouse groups.
Figure 15. Influence of Diet on Wire Suspension Latency in $Mecp2^{+/y}$ and $Mecp2^{308/y}$ Mice. Asterisks indicate that the grip strength of the Rett mouse groups was significantly lower ($P < 0.05$) than the wild-type SD-UR group. Diet had no effect on improving the ability of the Rett mice to suspend from the wire. Other conditions are similar as those shown in Figure 14.
Figure 16. Influence of Diet on Incline Latency (Negative Geotaxis) in \textit{Mecp2}^{+/y} and \textit{Mecp2}^{308/y} Mice. Asterisk indicates that the performance of the mice in both KC-R mouse groups and in the \textit{Mecp2}^{+/y} SD-R was significantly improved in orientating themselves against negative geotaxis ($P < 0.01$) compared to the mice in their respective SD-UR groups. The average incline latency by the \textit{Mecp2}^{+/y} SD-R mice was greater than that of the \textit{Mecp2}^{+/y} SD-UR mice, but this difference did not reach a statistical significance ($P = 0.058$). Other conditions are similar as those shown in Figure 14.
Figure 17. Influence of Diet on Dark to Light Emergence in $\text{Mecp}2^{+/y}$ and $\text{Mecp}2^{308/y}$ Mice. Cross indicates that the $\text{Mecp}2^{308/y}$ SD-UR mice emerged significantly later into the light compared to the $\text{Mecp}2^{+/y}$ control SD-UR ($P < 0.01$). Asterisk indicates that the $\text{Mecp}2^{308/y}$ KC-R mice emerged to the light significantly earlier than the $\text{Mecp}2^{308/y}$ SD-UR ($P < 0.05$). Double asterisk indicates that the $\text{Mecp}2^{308/y}$ SD-R mice emerged to the light significantly earlier than the $\text{Mecp}2^{308/y}$ SD-UR ($P < 0.01$). Other conditions are similar as those shown in Figure 14.
Figure 18. Influence of Diet on Total Time in the Light in $\text{Mecp}^2_{+/y}$ and $\text{Mecp}^2_{308/y}$ Mice. Cross indicates that the $\text{Mecp}^2_{308/y}$ SD-UR mice spent significantly less time in the light compared to the $\text{Mecp}^2_{+/y}$ control SD-UR ($P < 0.05$). Asterisk indicates that the $\text{Mecp}^2_{308/y}$ KC-R mice spent significantly more time in the light than the $\text{Mecp}^2_{308/y}$ SD-UR ($P < 0.05$). Double asterisk indicate that the $\text{Mecp}^2_{308/y}$ SD-R mice spent significantly more time in the light than the $\text{Mecp}^2_{308/y}$ SD-UR ($P < 0.01$). Double cross indicates that the $\text{Mecp}^2_{+/y}$ SD-R mice spent significantly more time in the light than the $\text{Mecp}^2_{+/y}$ SD-UR ($P < 0.05$). Other conditions are similar as those shown in Figure 14.
### Table 6: Mean light-dark compartment transitions

<table>
<thead>
<tr>
<th>Group</th>
<th>Light-dark transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mecp2^{+/y} SD-UR</td>
<td>4.50 ± 1.32</td>
</tr>
<tr>
<td>Mecp2^{+/y} KC-R</td>
<td>6.00 ± 1.73</td>
</tr>
<tr>
<td>Mecp2^{+/y} SD-R</td>
<td>10.25 ± 1.18&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Mecp2^{308/y} SD-UR</td>
<td>0.29 ± 0.29&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Mecp2^{308/y} KC-R</td>
<td>3.71 ± 1.67&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>Mecp2^{308/y} SD-R</td>
<td>5.25 ± 1.65&lt;sup&gt;d&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

<sup>1</sup> Data are expressed as Means ± SEM for all six groups of mice.

<sup>a</sup> Mecp2^{+/y} SD-R significantly different from Mecp2^{+/y} SD-UR group at \( P < 0.05 \) (as determined from the Anova analysis).

<sup>b</sup> Mecp2^{308/y} SD-UR significantly different from control Mecp2^{+/y} SD-UR group at \( P < 0.05 \) (as determined from the Anova analysis).

<sup>c</sup> Mecp2^{308/y} KC-R significantly different from Mecp2^{308/y} SD-UR group at \( P < 0.05 \) (as determined from the Anova analysis).

<sup>d</sup> Mecp2^{308/y} SD-R significantly different from Mecp2^{308/y} SD-UR group at \( P < 0.05 \) (as determined from the Anova analysis).
<table>
<thead>
<tr>
<th>Group</th>
<th>Time on bar (20 rpm)</th>
<th>Time on bar (30 rpm)</th>
<th>Time on bar (40 rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mecp2&lt;sup&gt;+/y&lt;/sup&gt; SD-UR</td>
<td>41.38 ± 10.52</td>
<td>52.50 ± 3.97</td>
<td>44.88 ± 7.56</td>
</tr>
<tr>
<td>Mecp2&lt;sup&gt;+/y&lt;/sup&gt; KC-R</td>
<td>52.25 ± 5.42</td>
<td>60.00 ± 0.00</td>
<td>59.63 ± 0.38</td>
</tr>
<tr>
<td>Mecp2&lt;sup&gt;+/y&lt;/sup&gt; SD-R</td>
<td>59.62 ± 0.37</td>
<td>59.62 ± 0.37</td>
<td>57.37 ± 2.62</td>
</tr>
<tr>
<td>Mecp2&lt;sup&gt;308/y&lt;/sup&gt; SD-UR</td>
<td>18.14 ± 3.58&lt;sup&gt;a&lt;/sup&gt;</td>
<td>27.64 ± 7.18&lt;sup&gt;a&lt;/sup&gt;</td>
<td>19.14 ± 3.61&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Mecp2&lt;sup&gt;308/y&lt;/sup&gt; KC-R</td>
<td>27.50 ± 9.05</td>
<td>38.36 ± 8.44</td>
<td>30.07 ± 6.06</td>
</tr>
<tr>
<td>Mecp2&lt;sup&gt;308/y&lt;/sup&gt; SD-R</td>
<td>43.00 ± 11.68&lt;sup&gt;c&lt;/sup&gt;</td>
<td>53.75 ± 6.25&lt;sup&gt;c&lt;/sup&gt;</td>
<td>24.5 ± 7.64</td>
</tr>
</tbody>
</table>

<sup>a</sup> Mecp2<sup>308/y</sup> significantly different from control Mecp2<sup>+/y</sup> SD-UR group at P < 0.05 (as determined from the Anova analysis).

<sup>b</sup> Mecp2<sup>308/y</sup> significantly different from control Mecp2<sup>+/y</sup> SD-UR group at P < 0.01 (as determined from the Anova analysis).

<sup>c</sup> Mecp2<sup>308/y</sup> SD-R significantly different from Mecp2<sup>308/y</sup> SD-UR group at P < 0.05 (as determined from the Anova analysis).

<sup>1</sup> Data are expressed as Means ± SEM for all six groups of mice.
### Table 8: Performance of Mecp2 mice in the open-field task

<table>
<thead>
<tr>
<th>Group</th>
<th>Total distance in periphery (cm)</th>
<th>Total distance in center (cm)</th>
<th>Number of entries in periphery</th>
<th>Number of entries in center</th>
<th>Rearing events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mecp2^{+/-} SD-UR</td>
<td>859.15 ± 86.80</td>
<td>410.21 ± 61.43</td>
<td>36.00 ± 3.70</td>
<td>35.25 ± 3.70</td>
<td>68.00 ± 10.45</td>
</tr>
<tr>
<td>Mecp2^{+/-} KC-R</td>
<td>1225.55 ± 96.17</td>
<td>737.23 ± 149.31</td>
<td>74.25 ± 8.57</td>
<td>73.75 ± 8.82</td>
<td>159.75 ± 23.88</td>
</tr>
<tr>
<td>Mecp2^{+/-} SD-R</td>
<td>954.40 ± 120.56</td>
<td>646.43 ± 65.57</td>
<td>64.50 ± 11.03</td>
<td>64.00 ± 11.30</td>
<td>128.50 ± 16.76</td>
</tr>
<tr>
<td>Mecp2^{308y} SD-UR</td>
<td>812.80 ± 64.02</td>
<td>402.77 ± 81.46</td>
<td>36.29 ± 5.76</td>
<td>35.71 ± 5.84</td>
<td>58.86 ± 10.72</td>
</tr>
<tr>
<td>Mecp2^{308y} KC-R</td>
<td>953.95 ± 45.16</td>
<td>528.32 ± 28.93</td>
<td>54.29 ± 2.56</td>
<td>53.71 ± 2.51</td>
<td>93.71 ± 11.66</td>
</tr>
<tr>
<td>Mecp2^{308y} SD-R</td>
<td>835.66 ± 51.22</td>
<td>725.17 ± 27.79</td>
<td>63.25 ± 3.33</td>
<td>62.75 ± 2.78</td>
<td>55.25 ± 12.00</td>
</tr>
</tbody>
</table>

1 Data are expressed as Means ± SEM for all six groups of mice (N = 4 - 7 mice per group).

a Mecp2^{+/-} KC-R or Mecp2^{+/-} SD-R group mice are significantly different from control Mecp2^{+/-} SD-UR group mice at P < 0.01 (as determined from the Anova analysis).

b Mecp2^{+/-} KC-R group mice are significantly different from control Mecp2^{+/-} SD-UR group mice at P < 0.05 (as determined from the Anova analysis).

c Mecp2^{+/-} SD-R group mice are significantly different from Mecp2^{308y} SD-UR group mice at P < 0.01 (as determined from the Anova analysis).

d Mecp2^{308y} KC-R group mice are significantly different from Mecp2^{308y} SD-UR group mice at P < 0.05 (as determined from the Anova analysis).

e Mecp2^{308y} SD-R group mice are approaching significance level compared to control Mecp2^{+/-} SD-UR group mice at P = 0.058 (as determined from the Anova analysis).
CHAPTER FIVE

*Implementation of Calorically Restricted Diets for the Management of Neurological and Neurodegenerative Disease in Murine Models*

INTRODUCTION

**Influence of Diet Therapies on Disease Phenotype**

Diet therapies, especially calorie restriction (CR) and the ketogenic diet (KD), possess therapeutic potential in clinical settings and also delay or reduce symptoms associated with a range of age-associated pathologies in laboratory rodents (Tables 9 and 10). CR is a natural dietary therapy that has long been recognized to improve health, promote longevity, and to reduce the incidence and symptoms of a broad spectrum of neurological and neurodegenerative diseases (Tables 9 and 10). Those diseases include epilepsy (Azarbar et al., 1999b; Greene et al., 2001; Mantis et al., 2004; Seyfried et al., 2009b), aging (Weindruch and Walford, 1988; Forster et al., 2003; Smith et al., 2004; Everitt and Le Couteur, 2007; Barzilai and Bartke, 2009; Sohal et al., 2009), Sandoff’s disease (Denny et al., 2006), Alzheimer’s disease (Qin et al., 2006; Halagappa et al., 2007; Qin et al., 2008), Parkinson’s disease (Maswood et al., 2004), Huntington’s disease (Duan et al., 2003), ALS (Hamadeh et al., 2005),
neuronal damage (Anson et al., 2003), and brain cancer (Seyfried et al., 2003; Mukherjee et al., 2004; Zhou et al., 2007; Marsh et al., 2008b). CR also reduces some of the symptoms associated with diabetes (Kelley et al., 1993; Pedersen et al., 1999; Minamiyama et al., 2007; Ugochukwu and Figgers, 2007; Jazetz et al., 2008), cardiovascular diseases (Ahmet et al., 2005; Mager et al., 2006; Fontana, 2008; Hammer et al., 2008), hypertension (Zimmerman and Wylie-Rosett, 2003; Fontana, 2009), other types of cancer (Mukherjee et al., 1999; Jiang et al., 2008; Bonorden et al., 2009; Mavropoulos et al., 2009), and non-neurological diseases (Fenton et al., 2009; Fontana, 2009). While the exact neuroprotective mechanism(s) of CR are not completely understood, we suggest that the protection conferred by the diet in the majority of disorders is associated (i) with a reduction in circulating glucose levels and (ii), from a concomitant and indeed compensatory elevation of ketone body levels (Tables 9 and 10) (Mantis et al., 2004; Seyfried et al., 2009b). This transition could be thought as a “normal” physiological cerebral/somatic adaptation to the implementation of CR. It has been postulated, that the therapeutic effects of CR stem from caloric restriction per se and not from the pre-defined restriction of any specific dietary component such as proteins, vitamins, mineral, fats, and/or carbohydrates (Tannenbaum, 1959; Seyfried et al., 2003; Mantis et al., 2004; Barzilai and Bartke, 2009; Seyfried et al., 2009a). Although CR in mice mimics therapeutic fast in humans (Mahoney et al., 2006), it is important to emphasize that CR differs from acute fasting or starvation in that CR reduces total caloric intake without producing
anorexia or malnutrition (Tannenbaum, 1959; Cahill, 1970; Weindruch and Walford, 1988; Mantis et al., 2004; Seyfried et al., 2009a).

Historically, the high fat, low carbohydrate ketogenic diet (KD) has been reported to produce antiepileptic, anticonvulsant, and other neuroprotective effects similarly to that seen in CR in both human and animal models of seizures/epilepsy (Table 9) (Appleton and De Vivo, 1973; Todorova et al., 2000; Greene et al., 2003; Mantis et al., 2004; Nylen et al., 2005; Yamada et al., 2005; Freeman et al., 2007; Hartman et al., 2007; Bough, 2008; Samala et al., 2008; Fenoglio-Simeone et al., 2009). Hence, the KD has garnered increasing interest as a novel alternative therapy for a variety of neurological disorders (Table 10). Those include Rett Syndrome (Liebhaber et al., 2003; Mantis et al., 2009), Alzheimer’s disease (Van der Auwera et al., 2005; Gasior et al., 2006), Parkinson’s disease (Maswood et al., 2004), brain cancer (Zhou et al., 2007; Marsh et al., 2008a), and Amyotrophic Lateral Sclerosis (Zhao et al., 2006; Mattson et al., 2007). In addition, CR has been reported to reduce the acute loss of neural parenchyma during ischemic and/or hemorrhagic stroke, as well as following traumatic brain injury or insulin-induced hypoglycemia (Table 10) (Yamada et al., 2005; Gasior et al., 2006; Prins, 2008; Puchowicz et al., 2008). This neuroprotective effect of CR most likely stems from the ability of the brain to utilize ketones during low glycolytic conditions (Vannucci and Simpson, 2003; Pierre and Pellerin, 2005). Furthermore, the KD has been shown to positively influence the behavior of autistic children (Evangelou et al., 2003), as well as
produce cerebral and somatic metabolic alterations that enhance energy expenditure and ultimately reduce body weight (Kennedy et al., 2007). This latter phenomenon serves as the marketing platform of the high fat, low carbohydrate Atkins diet as a weight loss paradigm (Kossoff et al., 2007; Wylie-Rosett and Davis, 2009). As illustrated in Figure 22, the therapeutic efficacy of the KD is best when the diet is administered in restricted amounts (Mantis et al., 2004; Freeman et al., 2007; Seyfried et al., 2009b). Although the role glucose and ketone bodies (β-hydroxybutyrate [β-OHB] and acetoacetate) in potentiating the protective effects of the KD in various disease processes remains unclear, it is our contention that alterations in brain/parenchyma cell energy metabolism are likely involved, as seen with CR (Tables 9 and 10) (Mantis et al., 2004; Marsh et al., 2008a; Maalouf et al., 2009; Seyfried et al., 2009b).

ISSUES WITH DIET IMPLEMENTATION

One of the most promising advances in delineating the mechanism(s) by which CR extends survival and regresses multiple disease processes was the observation that the physiological adaptations incurred by the onset of CR to improve health are evolutionary conserved (Klass, 1977; Weindruch and Walford, 1988; Jiang et al., 2000; Bross et al., 2005; Goldberg et al., 2009). Organisms have evolved to sense and adapt to environmental cues for their survival when
compromising conditions such as food depletion or various forms of energy stress are present (Vaquero and Reinberg, 2009). The sirtuin family of proteins has been implicated as such a potential evolutionarily conserved mechanism for life span regulation and aging retardation (Blander and Guarente, 2004; Guarente and Picard, 2005; Bishop and Guarente, 2007; Feige et al., 2008b; Hipkiss, 2008). Specifically in mammals, SIRT1 deacetylates many key transcription factors and co-factors, thereby affecting crucial cellular pathways involved in stress resistance and metabolism (Westphal et al., 2007).

Nevertheless, previous studies in rodents have shown that the effects of CR on extending lifespan are strongly correlated and dose dependent to the degree of caloric intake reduction (Weindruch et al., 1986; Merry, 2002). Furthermore, in drosophila D. melanogaster the neuroprotective effects of CR are very rapidly, given the short lifespan of the organism, suggesting that the measurements of the rate of age-specific mortality may require large numbers of animals (Mair et al., 2005). Although comparisons of a variety of age/disease-related changes have been made between energy-restricted and unrestricted rodents in an effort to identify the underlying physiological/biochemical neuroprotective process(es) of those diets many studies fail to provide a standardized regimen for diet implementation. Thus, the complexity of the physiology involved in determining the beneficial effects of CR as well as technical issues in experimental design, the therapeutic mechanism(s) of CR remain still elusive (Masoro, 2009). As briefly indicated in Tables 9 and 10, in the
literature there is considerable evidence that the health beneficiary effects of CR or the KD are not consistent between various rodent models, thus resulting in discrepancies in data interpretation regarding the neuroprotective effects of those diets. Therefore, the goal of this review is address issues of diet implementation in disease management and to provide proper implementation guidelines that may ultimately aid in the elucidation of the CR neuroprotective mechanism(s). We suggest that these diet implementation guidelines, on a working “standard” calorically restricted paradigm for disease animal models, should not only maximize the therapeutic diet efficacy but also normalize data interpretation for comparison within different animal studies by reducing laboratory artifacts.

A. A Comparative Analysis of CR to Other Dietary Energy Restriction Regimens

In the literature, CR is also referred to as dietary restriction (DR), dietary energy restriction (DER), and food restriction. However, these terms are not synonymous (Table 11), thus one needs to be cautious when studying them (Thompson et al., 2003). As illustrated in Table 11, CR specifically refers to a dietary regimen formulated so that animals are fed different number of calories while still receiving the same facet of all other nutrients (Thompson et al., 2003). Although several forms of DR have been reported to extend survival and increase life span in animal disease models (Piper and Bartke, 2008; Anderson...
et al., 2009; Colman et al., 2009; Masoro, 2009), many studies inappropriately describe “intermittent fasting, (IF),” as a prototypical variant of CR (Anson et al., 2003; Duan et al., 2003; Halagappa et al., 2007; Armentero et al., 2008). Recent studies suggest that the daily food consumption and underlying therapeutic mechanism(s) of CR and IF may vary considerably (Goodrick et al., 1990; Martin et al., 2006; Masoro, 2009).

In a typical IF regimen, food is provided *ad libitum* to animals on an “every-other-day” basis accompanied with a 24-hr fast in between feeding days (Figure 19). However, each IF regimen usually results in varying degrees of body weight loss (Anson et al., 2003; Mattson and Wan, 2005; Bates et al., 2007; Marsh et al., 2008b; Froy et al., 2009; Katare et al., 2009; Madorsky et al., 2009). This probably is due to the influence of both the animal genotype and the age of the animal during diet initiation (Goodrick et al., 1990). In contrast to the aforementioned IF regimen, animals fed a calorie-restricted diet usually consume enough food to maintain a stable body weight loss relative to their initial body weight (Figure 22) (Mantis et al., 2004). It is possible that the complex relationship of body weight to life span both between and within the various dietary groups makes it difficult to predict that lower body weight increases survival or that is neuroprotective (Goodrick et al., 1990). Furthermore, IF-treated mice eat roughly twice as much food compared to the mice eating *ad libitum* on the days they have access to food, a phenomenon also seen in rats during an IF regimen (Lueker et al., 1956; Anson et al., 2003; Descamps et al.,
This finding suggests that rodents exhibit increased food consumption on the fed days in order to maintain similar body weights as those seen in rodents fed *ad libitum*.

Interestingly, this binge-eating phenomenon is also observed upon re-feeding of normal mice calorie restricted for 30 days (Mahoney et al., 2006). As shown in Figure 20, re-feeding of restricted mice results in an approximate two-fold increase in food intake compared to either their *ad-libitum* pre-restricted period food intake or the food intake of *ad libitum* fed mice (Grand and Millar, 1990; Hagan and Moss, 1997; Hagan et al., 2002; Mahoney et al., 2006). Similarly, re-feeding adult EL previously restricted to 20-24% of their pre-trial body weight resulted in similar body weights at the end of the re-feeding period (Figure 21). However, while the body weight and plasma lipids returned to unrestricted levels, plasma glucose and food intake remained significantly lower in the re-fed CR mice (Mahoney et al., 2006). Contrary to this, re-feeding of IF subjects resulted in no apparent differences in glucose levels (Halberg et al., 2005; Becskei et al., 2008, 2009). This suggests that CR establishes a new homeostatic state that persists following *ad libitum* feeding most likely by reducing thermogenesis, where IF does not (Lane et al., 1996; Overton and Williams, 2004; Mahoney et al., 2006). Reduced thermogenesis and subsequent increased activity-related energy expenditure allows less energy to be lost as heat by modulating uncoupling proteins (UCP1) (Klaus et al., 2005; Neschen et al., 2008). UCP1 is a major player in basal and regulatory thermogenesis, overall
energy balance, and body weight regulation.

Moreover, IF generates cycles of lipolysis and fat storage that are not representative of the usual 30-45% reduction in caloric intake (Weindruch et al., 1986; Feige et al., 2008a; Froy et al., 2009). Interestingly, re-feeding of a high fat diet following periods of food deprivation results in a significant decrease in glyceraldehyde phosphate dehydrogenase (GAPDH) activity (Saggerson and Greenbaum, 1969). This enzyme catalyzes the conversion of glyceraldehyde phosphate to D-glycerate 1,3-bisphosphate during glycolysis, compared to other dietary forms of refeeding. A decrease in GAPDH activity results in the diversion of carbohydrate metabolism away from fatty acid synthesis into the formation of glycerol phosphate, the precursor for triglyceride and phospholipids synthesis in liver and adipose tissue (Freedland, 1967; Jansen et al., 1968; Krizova and Simek, 1996; Hillgartner and Charron, 1998; Reshef et al., 2003). Finally, it has been shown that IF can differentially effect circadian rhythms depending on food availability, suggesting that this regimen induces a metabolic state that affects the suprachiasmatic nuclei clock in mice (Froy et al., 2009). Therefore, in contrast to the cyclic IF regimen where body fat deposition increases while decreasing energy expenditure (Lim et al., 1996), CR decreases energy intake, and expenditure along with metabolic rate without increasing fat deposition (McCarter et al., 1985; DeLany et al., 1999; Greenberg and Boozer, 2000; Ramsey et al., 2000; Faulks et al., 2006).
B. Importance of Body Weight as an Independent Measure During CR

Most rodent diets are formulated to promote rapid post-weaning growth with the intent of maximizing body weight gain with age (Ward, 1981). When considering the specific nutrient requirements of mice, it is important to be cognizant of not only the animal age and genotype (male vs. female; wild-type vs. transgenic) (Goodrick et al., 1990), but also the tight association of energy status to physiology (e.g. metabolic energy status, daily energy expenditure, and genetic background) (Felber and Golay, 1995; Ferguson et al., 2008). The observation that CR does not enhance survival in DBA mice despite an apparent reduction in body weight reinforces the importance of the genetic background and diet regimen in determining the neuroprotective effects of CR (Turturro et al., 1999; Forster et al., 2003). Many studies, for instance, evaluating the daily protein requirements for mice have found that a minimal 13.6% casein (~12% protein) is needed for adequate growth, reproduction, and lactation (Goettsch, 1960). This is an important issue regarding the effects of the KD and CR diets in regards to protein and vitamin intake (Likhodii, 2001; Cunnane and Likhodii, 2004; Samala et al., 2008). For example in rodents, interchanging casein and soy peptone as the source of dietary protein has resulted in different survival rates (Iwasaki et al., 1988). Therefore, similar amounts of protein and vitamins are necessary for not only sufficient animal growth and prevention of malnutrition, but also correct data interpretation (Reeves et al., 1993).
The maintenance of metabolic homeostasis relies on the balanced intake of nutrients from food. Although various forms of CR have been implemented each with different levels of feeding restriction, CR typically is administered as a 25-60% decrease in total calorie intake (Martin et al., 2007; Feige et al., 2008a; Masoro, 2009). The most widely used method for implementing CR is pair-feeding. During pair-feeding, CR animals are restricted 70-30% of the daily food intake of the ad libitum control group (Feige et al., 2008a). However, measuring food intake for group-housed animals instead of individual housed, raises concerns regarding the efficacy of these diets and data interpretation (Feige et al., 2008a). Usually, group-housing results in varying body weight between animal cohorts, which may result in body weight changes that are independent of any dietary manipulation (Giralt and Armario, 1989; Perez et al., 1997; Ruis et al., 1999; Nyska et al., 2002; Haseman et al., 2003; Ikeno et al., 2005). Thus, housing animals singly reduces data discrepancies. It is important to mention though that the initial stress of housing animals singly sometimes may result in body weight reduction independently of the ad libitum fed diet, which is largely due to the animals acclimating to the new environment (Figure 22) (Mantis et al., 2004).

Although it is commonly held that “a calorie is a calorie” and that diets of equal caloric content will result in identical weight change independent of macronutrient composition, the laws of thermodynamics do not support this notion (Feinman and Fine, 2004; Fine and Feinman, 2004). Comparing iso-
calorically restricted diets of different macronutrient composition has shown to induce different changes in body mass (Young et al., 1971; Rabast et al., 1978; Piatti et al., 1994; Golay et al., 1996; Baba et al., 1999; Layman et al., 2003). In particular low carbohydrate diets, such as CR, result in a more significant weight loss than isocaloric diets of high carbohydrate or fat content (such an example is shown in Figure 23). Thus implementing CR regimens as a percent of the daily caloric intake of the control animal may not be informative for data interpretation.

Also when studying the efficacy of diet therapies on a disease phenotype or animal behavior, it is important to mention that exogenous factors as well as the environment modulate/regulate metabolism. In particular, stress, glucocorticoids, G protein-coupled receptors, NPY along with its receptors, and hormones (e.g. leptin, ghrelin, cholecystokinin, peptide YY$_{3-36}$, a-melanocyte stimulating hormone) all play a pivotal role in body weight and food intake regulation (Marti et al., 1994; Schwartz et al., 2000; Tamashiro et al., 2005; Morton et al., 2006; Beckers et al., 2009; Dietrich and Horvath, 2009; Ferrini et al., 2009). In various animals it has been shown that exposure to stressors (e.g. surgery, various types of drugs or endotoxins, inflammation, etc.) can cause a varying range of biochemical, physiological, and behavioral changes (Armario et al., 1988; Marti et al., 1994; Valles et al., 2000). Specifically, we have shown that tumor implantation reduces body weight (surgery is a body weight modulator) in mice (Zhou et al., 2007; Marsh et al., 2008b). Thus, when CR needs to be co-administered along with a stressor, body weight must be allowed to normalize
back to its pre-stressed (e.g. pre-surgery) levels before starting any dietary manipulation. If body weight isn’t normalized then active body weight controls need to be used. Similarly to the effect of surgery, the administration of insulin in a dietary animal group can too play a significant role in body weight and food intake regulation (MacKay et al., 1940; Lotter and Woods, 1977; Grossman, 1986; Rushing et al., 2000; Schwartz et al., 2000; Woods et al., 2000). Additionally, drugs such as AEDs, TZDs, corticosteroids, THC, metformin, conglutin-gamma, and fish oil, all have been shown to affect various metabolic parameters, including body weight (Table 12) (Chan et al., 1996; Magni et al., 2004; Yasuda et al., 2004; Gounarides et al., 2008; Hausman et al., 2008; Gonzalez-Periz et al., 2009; Mishra and Mohanty, 2009; Mannaerts et al., 2010). Hormone levels and intact adrenal glands have also been show to be essential in the regulation of food intake and subsequently body weight (Yaktine et al., 1998; Liu et al., 2002). All aforementioned findings point on the modulating effect of a stressor, drug, or hormone levels on body weight regulation reaffirm the importance for the usage of active body weight controls in diet studies.

Consequently, when dividing mice into the various dietary groups, it is important to separate them based on their body weight such that the average body weight is the same between cohorts (similarly to Figures 22 and 23). It was mentioned earlier that CR has indeed a differential effect based on the genetic background of the animal (Forster et al., 2003). It is also know that inbred strains of mice, kept under the same laboratory conditions, differ in body weight at the
same age due to genetic variation (Poiley, 1972). Specifically, it has been shown that the food intake and metabolism of each mouse varies significantly due to gene copy variation (Roberts, 1981; Casellas et al., 2009; Hager et al., 2009; Orozco et al., 2009). It has also been reported that the behavioral assessment of genetically identical mice varies in different environments or test sites and that the genetic background plays a pivotal role in gene expression (Crabbe et al., 1999; Opsahl et al., 2002; Wahlsten et al., 2003; Lathe, 2004). This genetic variation becomes even more important when employing knockout or transgenic mice in dietary studies, since different mouse genotypes or genetic backgrounds can have different behavioral, metabolic, or gene/protein response to a particular diet (Lathe, 1996; Wolfer and Lipp, 2000; Opsahl et al., 2002). Because transgenic or gene knockout mice usually have reduced body weights compared to wild-type mice, further validates body weight as the independent variable when one is implementing a diet study (Joven et al., 2007; Reed et al., 2008).

All aforementioned findings raise the importance of a pre-dietary treatment fasting period as well as active body weight controls when one is about to initiate CR or the KD in animal models. Fasting in adult animals for about 14-16 hr prior to any dietary manipulation establishes a similar metabolic and potentially behavioral baseline at which all animals can start when separated in the various dietary groups (similarly to week 3 in Figure 22). For younger animals (still developing or before sexual maturity) a shorter fasting period (5-7 hr) may be used to avoid any growth retardation effects. Interestingly, in the clinic, the
ketogenic diet is traditionally initiated on an inpatient basis, beginning with a fast, to 'jump-start' ketosis, and is followed by a gradual transition over several days to a diet with a ketogenic ratio of 3:1 or 4:1 (grams of fat to grams of carbohydrate plus protein) (Seyfried et al., 2008a; Seyfried et al., 2009a).

Hence, we have established a new experimental design for the implementation of CR or other forms of DR in mice. In contrast to implementing CR based on the average food consumption of the unrestricted control mice, each restricted mouse serves as its own body weight control. This restriction paradigm reduces variability in body weights and food intake among rodents fed diets widely different in nutritional composition and caloric content (Figure 22) (Mantis et al., 2004). As mentioned earlier, isocaloric restriction of the high fat, low carbohydrate KD was unable to reduce body weight to the same degree as that observed when restricting the high-carbohydrate, high fat standard chow rodent diet (SD) (Figure 23). Using body weight as the independent measure for determining the percentage of CR rather than caloric intake, we can accurately measure blood metabolites, the disease phenotype, as well as study the effect of CR biochemical or behavioral processes (Mantis et al., 2004; Mantis et al., 2009). In addition, establishing metabolic (e.g. body weight, food intake, glucose, ketones, etc.), and disease phenotype (e.g. seizure frequency, behavior, etc.) pre-dietary baseline parameters for each animal further enables us to minimize any data discrepancies (Mantis et al., 2004).

Thus knowing “where and how your animal has been treated” is very
important. When obtaining already treated animals from various vendors for diet studies, one should use caution as to how those animals were housed (grouped vs. singly housed), what age or genotype are they, and of course whether each animal was used as its own body weight control. Nevertheless, we ought to mention that due to raising costs in animal husbandry and per diem charges, if an investigator was to choose group housing for his/her animal diet studies, he/she should be aware of the limitations of this housing paradigm. Employing statistical tools one could omit animals from a group-housed cohort that did not respond similarly to a specific diet treatment regimen (e.g. similar % body weight reduction), thus maximizing the dietary efficacy and normalizing data interpretation.

C. Influence of Diet on Rodent Metabolism

Implementation of the high fat KD is often difficult, as the diet tends to produce an unanticipated loss of body weight. In many studies where the KD is fed to animals in unrestricted amounts the animals lose body weight (Tables 9 and 10) (Su et al., 2000; Thavendiranathan et al., 2000; Likhodii et al., 2002; Ziegler et al., 2002; Noh et al., 2004; Silva et al., 2005; Yamada et al., 2005; Bough et al., 2006; Thio et al., 2006; Kennedy et al., 2007; Samala et al., 2008; Hansen et al., 2009). This observation contradicts what our laboratory and others have observed regarding the effect of UR-fed KD on body weight. Our
data show that when the KD is provided to adult animals in unrestricted amounts, it resulted in no significant reduction of body weight compared to the body weight of the control animals (Figure 22, and Tables 9 and 10) (Muller-Schwarze et al., 1999; Rho et al., 1999; Likhodii et al., 2000; Mantis et al., 2004). This body weight reduction in unrestricted KD fed mice may be due to "self-restriction" associated with the unpalatable diet. It is possible that the various metabolic or behavior differences observed in the self-restricted KD group resulted from CR rather than from the KD alone, which can result in incorrect data interpretation. Thus, in order one to test the hypothesis of whether the underlying therapeutic mechanism of CR and the KD is possibly different, the animals that are fed the unrestricted KD should have similar body weights to normal control animals fed a standard diet (Figure 22) (Todorova et al., 2000; Mantis et al., 2004). As previously shown, whenever the KD is fed unrestricted, the mice should not lose body weight compared to normal control (Figure 22, and Tables 9 and 10) (Muller-Schwarze et al., 1999; Rho et al., 1999; Likhodii et al., 2000; Mantis et al., 2004).

Interestingly, we have previously shown that although an unrestricted KD could delay the onset of seizures in young EL mice with a genetic predisposition to epileptic seizures (Todorova et al., 2000), greater seizure control was achieved when these mice were fed a calorically restricted KD (KD-R) (Mantis et al., 2004). This suggests that KD-R has a greater neuroprotective effect than unrestricted KD, at least in rodent models of epilepsy (Mantis et al., 2004). A
similar observation, on the beneficial effects of a KD-R, was shown involving brain tumor bearing mice (Seyfried et al., 2003; Zhou et al., 2007). Thus, the therapeutic benefits of the ketogenic diet in a variety of diseases may be enhanced further when the diet is carefully administered in restricted amounts to avoid malnutrition or growth retardation.

However, this later notion of malnutrition becomes very important when performing calorically restricted dietary studies in young suckling animal, since the transition from the suckling (fed) state to a calorically restricted state could be associated with the development of malnutrition which in turn can produce a severe loss of body weight (Table 9) (Bough et al., 1999b; Harney et al., 2002; Thavendiranathan et al., 2003). It is imperative that no developmental delays are evident to CR-fed young animals that may affect overall mouse behavior, phenotype (e.g. seizure susceptibility), or metabolism. Specifically, although both hypoglycemia and malnutrition increase seizure incidence in humans by most likely reducing the population of GABAergic neurons (Bennish et al., 1990; Andrade et al., 1995; Andrade and Paula-Barbosa, 1996; Crepin et al., 2009), malnutrition has varying effects on GABA metabolism, the major brain inhibitory neurotransmitter (Smith et al., 1974), as well as overall metabolism (James and Coore, 1970).

Therefore, cautionary measures need to be implemented when dealing with growing/developing animals. Specifically, the percent growth of the young mice in the R-fed mouse groups must be similar to the mice fed normal chow
unrestricted as previously described (Figure 24) (Todorova et al., 2000; Greene et al., 2001). It is vital that the percent body weight reduction for young mice fed a restricted diet is not greater than 8-10%, in order to avoid malnutrition effects (Figure 24). Based on experimental evidence, we propose that for older animals a 30-65% reduction in dietary calories should produce about a 15-25% decrease in body weight and that these parameters are acceptable for dietary studies. The findings of the aforementioned studies further support our contention that it is imperative for each mouse to be used as its own control during the implementation of any DR or KD feeding regimen. In contrast to young animals, older cohorts can withstand a greater degree of CR or body weight reduction without develop malnutrition, as we have previously shown (Mantis et al., 2004; Denny et al., 2005; Mantis et al., 2009). Therefore, during dietary studies the stage of disease progression (early vs. late disease onset) and the suggestive percent of CR or body weight reduction need to be carefully examined.

Taken together, the abovementioned observations suggest that active body weight control groups should be used when one is performing dietary animal studies. Active body weight controls are produced by restricting the total calories consumed by a subgroup of control rodents so that the rodents achieve a similar degree of body weight relative to rodents that have been divided into the experimental or non-standard dietary treatment groups. For example, if a new CR mimetic agent increases life span or improves behavior while also reducing body weight in experimental test cohorts, it is necessary for the investigators to
demonstrate the extent to which the increased survival effect is due specifically
to the CR mimetic and not to an involuntary CR regimen.

D. Measurement of Metabolite Biomarkers

It is important to mention that serum metabolites (e.g. insulin, glucose),
food intake, and the gastrointestinal/pancreatic response in the whole animal is a
multi-dependent process and not just a simple stimulus-secretory response
interaction (Gagliardino and Hernandez, 1971; Grossman, 1986; Efendic and
Portwood, 2004; Sharma et al., 2008; Dietrich and Horvath, 2009; Ferrini et al.,
2009). In light of the observation that circulating biomarkers/metabolites of
energy status (e.g. glucose, ketones, insulin, glucagon, cortisol, free fatty acids,
triglycerides, etc.) are influenced by the influx of dietary calories and that the
levels of these markers fluctuate during the transition from the fed to the fasted
state (Fabry and Tepperman, 1970; Romsos et al., 1978; Tunbridge et al., 1991),
a subject must fast for at least 3-4 hrs prior to having the metabolites measured
in the peripheral circulation.

This is particularly relevant when measuring glucose, insulin, and ketone
body levels because it takes at least 2-3 hours for the level of these metabolites
to return baseline in the postprandial state. This consideration is also important
when one is attempting to connect a significant change in the level of a particular
biomarker(s) with the development of a specific disease phenotype, a change in
gene/protein expression levels, or with the expression of a certain animal
behavior (Hermus et al., 1994; van ‘t Veer, 1994; Lathe, 1996; Blanck et al.,
2003). Although, biomarkers provide alternative measures of dietary intake, they
can vary with absorption, metabolism, genetic background, and disease status.
Thus they should be chosen in relationship to both the dietary intake and the
chronology of exposure, since proper sample collection, storage, and analytical
laboratory technique can all affect the specific level of each corresponding
biomarker (Blanck et al., 2003). Interestingly, malnutrition has been shown to
result in a slower reduction of blood glucose levels in both humans and mice
(James and Coore, 1970; Okitolonda et al., 1987). Thus, because glucose and
ketone levels can vary based on prior food intake or malnutrition, blood
metabolites should to be carefully measured using validated enzyme assays
(Mantis et al., 2004; Zhou et al., 2007). For example, both glucose and ketone
body levels should only be measured in the blood (Turan et al., 2008), rather
than in the urine (Penders et al., 2005). That’s because both metabolites must
exceed a specific concentration in the blood before they get excreted into the
urine (Taboulet et al., 2007; Turan et al., 2008). Thus, urine may not accurately
represent the levels of the markers in the peripheral circulation (Gilbert et al.,
2000; Taboulet et al., 2007; Turan et al., 2008). Moreover, the pH of the blood
will also affect the extent to which ketone bodies, which are weakly acidic, get
produced (ketogenesis) (Wu et al., 1991), or excreted into the urine (Behre,
GUIDELINES FOR IMPLEMENTING CALORICALLY RESTRICTED DIETS FOR THE MANAGEMENT OF NEUROLOGICAL AND NEURODEGENERATIVE DISEASES

The first issue with therapeutic diet implementation is the non-conventional and non-pharmacological nature of the diet therapy (Seyfried et al., 2008a; Seyfried et al., 2009a). Despite the availability of well-established procedures for acceptable clinical practice, modern medicine has not looked favorably on diet therapies for complex diseases (Seyfried et al., 2008a; Seyfried et al., 2009a), maybe with the exception of type II diabetes. This latter fact is probably due to the lack of a standardized use protocol for implementing calorically restricted diets, which hinders the applicability of dietary therapies to a broad range of patients (Seyfried et al., 2008a; Seyfried et al., 2009a). Therefore, additional animal studies with proper standardized guidelines are needed to provide the clinical basis by which therapeutic diets can have a greater clinical relevance in disease management. Although, similar concerns are often raised for implementing the ketogenic diet as a therapy for epilepsy, several medical groups have successfully established various protocols for implementing the ketogenic diet or low glycemic diets in children (Freeman et al., 2000; Pfeifer and Thiele, 2005; Seo et al., 2007; Kossoff et al., 2008).

We suggest a sequential series of therapeutic phases for the dietary management of neurodegenerative diseases in mice, similar to what we have
recently proposed for the management of brain tumors using a restricted KD (Seyfried et al., 2008a; Seyfried et al., 2009a). During **Phase one** we need to establish the baseline metabolic and behavior parameters of animals housed individually for 4-7 days (pre-trial period). During this pre-trial period animals should be maintained on normal control SD, while body weight, food intake [food intake should be calculated using the formula: \( \text{FI (g/mouse/day)} = \frac{(W_i - W_{fx})}{n_{dx}} \), where \( W_i \) is the weight (g) of food initially given; \( W_{fx} \) is the amount of food remaining in the cage for \( x \) number of days; and \( n_{dx} \) is the number of day for which FI is calculated] as well as plasma glucose, ketone, insulin, and glucagon levels will be measured for each cohort. After, the initial pre-trial period, animals will be separated in their corresponding dietary groups where the average body weight of each group will be similar. For adult mice, a 14-hr fast will then be followed (5-7 hr fast for younger mice). This established pre-dietary baseline should help with data interpretation and reinforce any significant comparisons between groups. It should be again noted that appropriate active body weight controls are needed especially if drugs, various stressors, or different forms of diet application (paste vs. pellet vs. powder) are used within a dietary group regimen. Finally, during phase one, power analysis and other statistical tools are needed for determining cohort size and obtaining statistical significance between the various parameters. Similarly to the hippocampal transcriptosome changes observed in male and female rats under DR, statistics are important, because the level of dietary restriction influences differentially metabolism, reproductive
function, the development of age-related diseases, and even cognitive behavior, and gender-specific molecular responses (Martin et al., 2008).

During **Phase Two**, we need to gradually lower circulating glucose levels and elevate circulating β-OHB levels over several days or weeks using restricted diets or therapeutic fasting (Figure 25) (Mantis et al., 2004; Mahoney et al., 2006; Zhou et al., 2007; Mantis et al., 2009). The specific duration of dietary manipulation will depend on what type of genotype, or age of animal cohort we are studying. We suggest that a 20-25% body weight reduction for adult animals (Figure 22), and a 8-10% body weight reduction for younger animals while maintaining a constant rate of developmental growth (Figure 24), is sufficient to lower blood glucose levels between 6-7 mM (108-126 mg/dL) and β-OHB levels between 3-4 mM (31-42 mg/dL). These blood metabolite levels are well within normal physiological ranges and should be effective for disease management (Figure 25). This state in mice is referred as the zone of metabolic disease management (Figure 25). The feeding paradigms for restricting the KD or the SD are similar to those previously described by our laboratory (Mantis et al., 2004; Denny et al., 2005; Mahoney et al., 2006; Marsh et al., 2008b, a; Mantis et al., 2009). Interestingly, with medical supervision, a similar paradigm can be employed for the management of neurodegenerative diseases in patients.

**Phase three** commences when the animals have reached and maintained their corresponding body weight reduction for a couple days or weeks and are well within their zone of metabolic disease management. During this final phase,
additional observations can be made regarding the influence of the diet on the
disease phenotype, animal behavior, and even changes in specific biochemical,
molecular (ie. genomic, proteomic, lipidomic analysis), and physiological
parameters. In addition to glucose and ketones, other blood biomarkers such as
insulin, cholesterol, triglycerides, FFA, glucocorticoids, glucagon, leptin,
adiponectin, glucagons, IGF-1, IGF binding protein -1, -2, -3, -5, and -6 may also
be relevant to measure in order to confirm DR status. Specifically, previous
findings have shown that during CR, insulin, glucose, leptin, and IGF-1 are
reduced, while ketone, and glucocorticoids are increased (discussed in the
references of Tables 9 and 10) (Duan et al., 2003; Seyfried et al., 2003; Mantis et
al., 2004; Bonorden et al., 2009; Fenton et al., 2009).

Maintaining low blood glucose levels is very critical in disease
management. Brain does not usually metabolize ketone bodies for energy unless
circulating glucose levels are reduced, which is correlated with reduced body
weight (Owen et al., 1967; Clarke and Sokoloff, 1999; Greene et al., 2003;
Mantis et al., 2004). Specifically, elevated blood glucose levels have been shown
to have detrimental effects on disease phenotype and symptomatology (Fabry et
al., 1968; McIlwain, 1969; Fabry and Tepperman, 1970; Cornford et al., 2002).
Similarly, with respect to the ketogenic diet, “more is not better, as consumption
of excessive amounts of the ketogenic diet will maintain high blood glucose
levels and thus result in no disease management (Seyfried et al., 2003; Mantis et
al., 2004). Supplementation of vitamins and minerals should also not be a
problem as long as their consumption does not change any biochemical or physiological biomarkers (e.g. elevate circulating blood glucose levels).

DISCUSSION

Even though various types of DR are beneficial in most animal models in extending survival and reducing the symptoms associated with neurodegenerative diseases, further research is needed to establish a standardized way of performing these studies in animals, before bringing the therapeutic efficacy of DR into the clinic. Animal data need to be interpreted with caution, as restricted regimens in these animal cases may simply represent a transition from overeating to a healthier diet. Furthermore, in contrast to therapeutic fasting, DR to humans may not work as effectively due to a number of health concerns, which may not be applicable to or impact the life of experimental animals, but may do so in humans (Dirks and Leeuwenburgh, 2006). Potentially, new dietary formulations can be designed with nutritional and caloric compositions more appropriate for managing neurodegenerative and other types of diseases in humans. This could also involve the use of low glycemic diets, which are effective in maintaining low circulating glucose levels and are easier to implement than some ketogenic diets (Kossoff et al., 2007; Pfeifer et al., 2008).
Figure 19. Influence of Intermittent Fasting (IF) on Food Intake in VM Mice. IF resulted in an approximately two-fold increase of the food intake during the 24hr feeding period of the IF. Values are expressed as means of 5 mice per group. The black arrow indicates the initiation of the IF. Data were kindly provided by L. Shelton from the Seyfried laboratory at Boston College.
Figure 20. Influence of CR and Re-feeding on Food Intake (A) and Body Weight (B) in C57BL/6J Mice. Upon re-feeding CR mice consumed almost twice as much food compared to the unrestricted mice. Values are expressed as means ± SEM; n = 4–8 mice per group. The black arrow indicates the initiation of CR on day 8. The white arrow indicates the initiation of *ad libitum* re-feeding on day 30. Asterisks indicate that the food intake average of the days 38 to 50 of re-feeding for the R-RF mice was significantly less than their food intake prior to initiation of CR, as determined by the paired *t*-test (*P* < 0.05). Figure reprinted with permission from Mahoney et al., *Lipids Health Dis.*, 5:13, 2006.
Figure 21. Influence of Re-feeding on Body Weight of Calorie Restricted Adult EL Mice fed SD (A) or KD (B). Similarly to Mantis et al., adult EL mice (~ 240 days old) fed either a calorie restricted SD, or KD to achieve a 20-24% body weight reduction during a 9-week diet treatment period (Mantis et al., 2004), were switched back to *ad libitum* feeding for weeks 9-15. Upon re-feeding, R-fed mice consumed almost twice as much food compared to their restricted food intake (data not shown), and gradually their body weights matched those of the unrestricted fed mice. Values are expressed as means ± SEM; n = 8-10 mice per group for either UR fed group and n = 3-4 mice per group for either R-fed group. The black arrow indicates the initiation of CR on week 2. The gray arrow indicates the initiation of *ad libitum* re-feeding on week 9. Asterisks indicate that the mean body weight for weeks 5 to 9 of the R-fed mice was significantly less than the body weight of the UR-fed mice, as determined by both the paired *t*-test and ANOVA (*P* < 0.01). No difference in body weight was observed after re-feeding (weeks 10-15) between the UR and R-refed groups.
Figure 22. Influence of Diet on Body Weight in Adult EL Mice Fed a SD (A) or the KD (B). Both R-fed mice lost approximately 20-23% of their pre-dietary body weight. Body weight for both unrestricted groups was similar. Squares represent the pre-trial period when all mice were fed the SD-UR. Circles and triangles represent the UR-fed and R-fed groups, respectively. Values are expressed as the mean ± SEM (n = 6 mice per group). Arrow indicates initiation of CR.
Figure 23. Influence of Isocalorically Restricted Ketogenic and Standard Diets on Body Weight of Adult EL Mice. A four-week 40% isocaloric restriction of the KD and SD diet resulted in varying body weight loss in adult EL mice. Body weight values are expressed as the mean ± SEM (n = 6-7 mice per group) for the 4-week diet treatment period. Asterisk indicates that the body weight of the SD-R mice was significantly reduced compared to their respective SD-UR group, as determined by ANOVA analysis (P < 0.01).
Figure 24. Influence of CR on Body Weight in Juvenile EL Mice. Although the mean body weight was significantly lower in the juvenile 15% CR mice compared to the ad libitum (AL) mice over weeks 1–10 (*P < 0.01), the relative growth of the CR mice was similar to that of the AL group. Values are expressed as the mean ± SEM. Figure reprinted with permission from Greene et al., Epilepsia., 42(11):1371-78, 2001.
Figure 25. Relationship of Circulating Plasma Metabolites in the Management of Neurodegenerative and Neurological Diseases. These values are within normal physiological ranges of glucose and ketones under fasting conditions in mice. We refer to this state as the zone of metabolic disease management.
Table 9. Influence of Diet Therapies on Animal Models of Epilepsy

<table>
<thead>
<tr>
<th>Animal Age (Diet Initiation)</th>
<th>Seizure/Epileptic Model</th>
<th>Diet Paradigm</th>
<th>biomarker measurements</th>
<th>Diet effect on biomarkers and body weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young (P21)</td>
<td>PTZ, MES, Threshold ECS</td>
<td>SD KD</td>
<td>Glucose, Ketone</td>
<td>Reduced, Retarded</td>
</tr>
<tr>
<td>Adult (P21)</td>
<td></td>
<td>KD, SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young (P22)</td>
<td></td>
<td>KD, SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult (P22, 37)</td>
<td></td>
<td>KD, SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young (P32)</td>
<td></td>
<td>KD, SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young (P37)</td>
<td></td>
<td>SD KD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult (P75, 126)</td>
<td></td>
<td>KD, SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young (P20)</td>
<td></td>
<td>KD, SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult SD</td>
<td></td>
<td>KD, SD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Asterisks indicate the proper paradigm for diet implementation in young or adult animals

Abbreviations are: ECS, Electroconvulsive shock; IGE, Idiopathic generalized epilepsy; KD, Ketogenic Diet; MES, Maximal electroshock; PTZ, Pentylenetetrazol; SD, Standard Diet
Table illustrates a representative sample of the neuroprotective effects of dietary therapies in various neurological and neurodegenerative animal models.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Animal Age (Diet Initiation)</th>
<th>Diet Paradigm</th>
<th>Biomarker Measurements</th>
<th>Body Weight Effect</th>
<th>References</th>
<th>Animal Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS</td>
<td>Adult</td>
<td>BD</td>
<td>Reduced, Decreased</td>
<td>Reduced, Retarded</td>
<td>Mantis et al., 2009</td>
<td>HD-N171-82Q mice</td>
</tr>
<tr>
<td>Sandoff's Disease</td>
<td>Adult</td>
<td>BD</td>
<td>Reduced, Decreased</td>
<td>Reduced, Retarded</td>
<td>Marsh et al., 2008a</td>
<td>SOD1-G93A mice</td>
</tr>
<tr>
<td>Rett Syndrome</td>
<td>Adult</td>
<td>BD</td>
<td>Reduced, Decreased</td>
<td>Reduced, Retarded</td>
<td>Denny et al., 2006</td>
<td>Mecp2 308/y mice</td>
</tr>
<tr>
<td>Brain Cancer</td>
<td>Adult</td>
<td>BD</td>
<td>Increased, Reduced</td>
<td>Reduced, Similar</td>
<td>Zhao et al., 2006</td>
<td>MCAO rats</td>
</tr>
<tr>
<td>Alzheimer's Disease</td>
<td>Adult</td>
<td>BD</td>
<td>Reduced, Decreased</td>
<td>Reduced, Similar</td>
<td>Duan et al., 2003</td>
<td>3xTgAD mice</td>
</tr>
<tr>
<td>Parkinson's Disease</td>
<td>Adult</td>
<td>BD</td>
<td>Reduced, Decreased</td>
<td>Reduced, Similar</td>
<td>Marsh et al., 2008b</td>
<td>MPTP - Rh. monkeys</td>
</tr>
<tr>
<td>HD-N171-82Q mice</td>
<td>Young (P50)</td>
<td>BD</td>
<td>Reduced, Decreased</td>
<td>Reduced, Similar</td>
<td>Yaman et al., 2005</td>
<td>SOD1-G93A mice</td>
</tr>
<tr>
<td>Huntington's Disease</td>
<td>Adult</td>
<td>BD</td>
<td>Reduced, Decreased</td>
<td>Reduced, Similar</td>
<td>Armentero et al., 2008</td>
<td>Tg2576 mice</td>
</tr>
<tr>
<td>APP/V717I mice</td>
<td>Adult (P120)</td>
<td>BD</td>
<td>Reduced, Decreased</td>
<td>Reduced, Similar</td>
<td>Van der Auwera et al., 2005</td>
<td>APP/V717I mice</td>
</tr>
<tr>
<td>MCAO</td>
<td>Adult</td>
<td>BD</td>
<td>Reduced, Decreased</td>
<td>Reduced, Similar</td>
<td>Puchowicz et al., 2008</td>
<td>MCAO rats</td>
</tr>
<tr>
<td>Excitotoxin-induced mice</td>
<td>Young (P42)</td>
<td>BD; IF</td>
<td>Reduced, Decreased</td>
<td>Reduced, Similar</td>
<td>Anson et al., 2003</td>
<td>Excitotoxin-induced mice</td>
</tr>
<tr>
<td>Seyfried et al., 2003</td>
<td>Adult</td>
<td>BD</td>
<td>Reduced, Decreased</td>
<td>Reduced, Similar</td>
<td>Zhou et al., 2007</td>
<td>Excitotoxin-induced mice</td>
</tr>
</tbody>
</table>

Abbreviations are: ALS, Amyotrophic lateral sclerosis; KD, Ketogenic Diet; MCAO, Middle cerebral artery occlusion; SD, Standard Diet.
<table>
<thead>
<tr>
<th>Dietary energy restriction</th>
<th>Restriction of available energy by limiting caloric intake in absence of an effect on energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary or food restriction</td>
<td>Reduction of caloric intake by restricted all nutrients and dietary factors</td>
</tr>
<tr>
<td>Calorie or energy restriction</td>
<td>Daily reduction of only total caloric intake</td>
</tr>
<tr>
<td>Intermittent fasting</td>
<td>Reduction of total caloric intake every other</td>
</tr>
<tr>
<td>Fasting</td>
<td>Complete restriction of all available energy resulting in non-pathological conditions</td>
</tr>
<tr>
<td>Starvation</td>
<td>Complete restriction of all available energy resulting in pathological conditions</td>
</tr>
</tbody>
</table>

¹This table is modified from Thompson et al., 2003.
### Table 12. Influence of known drugs and herbs on rodent metabolism and body weight

<table>
<thead>
<tr>
<th>Drug</th>
<th>Body Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Corticosteroids</em></td>
<td>Reduced</td>
</tr>
<tr>
<td><em>Antipsychotics</em></td>
<td>Increased</td>
</tr>
<tr>
<td><em>TZDs</em></td>
<td>Increased</td>
</tr>
<tr>
<td><em>THCs</em></td>
<td>Increased</td>
</tr>
<tr>
<td><em>Metabolism</em></td>
<td>Increased</td>
</tr>
<tr>
<td><em>Fish oil</em></td>
<td>Reduced</td>
</tr>
<tr>
<td><em>Magnesium</em></td>
<td>Unchanged</td>
</tr>
<tr>
<td><em>Carnitine</em></td>
<td>Reduced</td>
</tr>
</tbody>
</table>

### Abbreviations
- **AEDs**: Antiepileptic drugs
- **THCs**: Tetrahydrocannabinol
- **TZDs**: Thiazolidinediones
- **Metabolism**: Decrease oxidative metabolism, metabolic rate, and body temperature, while increase heart rate. Existence of a dosage effect.
- **Fish oil**: Reduces plasma glucose in hyperglycemic animals
- **Magnesium**: Unforms hyperglycemia (lowers blood glucose)
- **Carnitine**: Increases insulin sensitivity; increase glucose and fatty acid uptake.
- **Corticosteroids**: Decrease glucose, insulin and fatty acid metabolism andAccrued.
- **Antipsychotics**: Decrease glucose and fatty acid metabolism.
- **TZDs**: Increase insulin sensitivity; increase glucose and fatty acid uptake.
- **Fish oil**: Reduces plasma glucose in hyperglycemic animals
- **Magnesium**: Unforms hyperglycemia (lowers blood glucose)
- **Carnitine**: Increases insulin sensitivity; increase glucose and fatty acid uptake.
- **Corticosteroids**: Decrease glucose, insulin and fatty acid metabolism andAccrued.
- **Antipsychotics**: Decrease glucose and fatty acid metabolism.
- **TZDs**: Increase insulin sensitivity; increase glucose and fatty acid uptake.
- **Fish oil**: Reduces plasma glucose in hyperglycemic animals
- **Magnesium**: Unforms hyperglycemia (lowers blood glucose)
- **Carnitine**: Increases insulin sensitivity; increase glucose and fatty acid uptake.
- **Corticosteroids**: Decrease glucose, insulin and fatty acid metabolism andAccrued.
- **Antipsychotics**: Decrease glucose and fatty acid metabolism.
- **TZDs**: Increase insulin sensitivity; increase glucose and fatty acid uptake.
- **Fish oil**: Reduces plasma glucose in hyperglycemic animals
CHAPTER SIX

Biochemical and Molecular Correlatives in the Management of Seizure Susceptibility in EL mice using the KD and CR

INTRODUCTION

Considering all presented findings, while it becomes evident that both CR and the KD successfully reduce seizure susceptibility in young and adult EL mice, the underlying neuroprotective mechanism of these diets still remains elusive. The one clear emerging mechanism that we can draw from this work is that a reduction in circulating glucose and a subsequent increase in β-hydroxybutyrate levels play an important role in the anticonvulsant efficacy of CR and the KD in EL mice (Mantis et al., 2004; Mantis et al., 2009; Seyfried et al., 2009b). Despite these intriguing observations, it is not yet clear what is the exact mechanism(s) for the neuroprotective effect of these diets.

As described in Chapter 2, under normal physiological conditions the brain derives almost all of its energy from the aerobic oxidation of glucose, via the facilitation of its glucose transporters (GLUT-1) (Mcllwain, 1969; Clarke and Sokoloff, 1999; Vannucci and Vannucci, 2000). However, in altered metabolic states, such as fasting or CR, the energetic demands of the brain transition from glycolysis to beta-oxidation. This leads to a production of ketone bodies, which are used as energy substrates. Monocarboxylate transporter 1 (MCT1) and to a
lesser extent MCT2, play a pivotal role in the transfer of ketones bodies (e.g. β-hydroxybutyrate, acetoacetate, and acetone) from the blood circulation into the brain (Nehlig and Pereira de Vasconcelos, 1993; Vannucci and Simpson, 2003; Morris, 2005; Pierre and Pellerin, 2005). This transition in energy substrate metabolism results in part to an increase in ketone body levels, which in turn has been shown to alter the glutamate-glutamine cycle and thus the availability of the major inhibitory neurotransmitter, gamma-aminobutyric acid (GABA) in the brain (Yudkoff et al., 2004; Yudkoff et al., 2005). GABA is synthesized from glutamate in a single rate-limiting enzymatic step by one of the two glutamic acid decarboxylase isoforms (GAD67 and GAD65) (Martin and Rimvall, 1993). The gad1 and gad2 genes are responsible for coding these two isoforms, respectively. This alteration in the GABA neurotransmitter pool is important since previous findings have shown that GABA and glutamate mediate fast synaptic inhibitory and excitatory neurotransmission in the CNS, respectively, and plays a major role in epileptogenesis (Meldrum and Garthwaite, 1990; Soghomonian, 1994; Bradford, 1995; Nishimura et al., 2005) (Yudkoff et al., 2001; Kaneez and Saeed, 2009).

Although this single alteration in the glutamate-glutamine cycle may be important in the neuroprotective effects of CR and the KD, emerging evidence suggests that following periods of CR or the KD, a wide range of metabolic and neurochemical changes instead take place (Bough and Rho, 2007; Maalouf et al., 2009; Seyfried et al., 2009b). More specifically, a notable improvement in
mitochondrial function, a decrease in the expression of apoptotic and inflammatory markers, an increase in the activity of neurotrophic factors, alterations in brain energy metabolism, and changes in neuronal activity and neurotransmission pool are all to some extent thought to play an important role in the antiepileptic and anticonvulsant effect of these diets (McIlwain, 1969; Veech et al., 2001; Mazarati and Wasterlain, 2002; Veech, 2004; Yudkoff et al., 2004; Yudkoff et al., 2005; Bough and Rho, 2007; Maalouf et al., 2009; Seyfried et al., 2009b).

In order to better elucidate the mechanism of action of DER, we sought to examine the influence of the KD and CR on gene and protein expression in the EL mouse. Our results show that both CR and the KD have a multifaceted effect in the expression and regulation of various genes and proteins. More specifically, we found that the enzyme glutamic acid decarboxylase (GAD67) and the monocarboxylate transporter 1 (MCT1) may be involved in the anticonvulsant and antiepileptic mechanism of the KD in EL mice.

METHODS AND MATERIALS

Mice

The EL mouse model used in these studies has been described in the Materials and Methods section of Chapter 2. DDY, an inbred non-epileptic EL
background mouse strain, was obtained originally from Clea Japan, Inc. All mice were maintained and housed as described in the Materials and Methods section of Chapter 2.

**Mouse Tissue**

At the end of each diet treatment period studying the influence of the diet in seizure susceptibility in adult and young EL mice, the brain, liver, spleen, kidney, heart, and lung, of all various dietary mouse groups were carefully dissected and stored at -80°C. It should be noted that R-fed mice were not fed prior to tissue extraction. Brain tissues were further dissected and separated in left and right cortex, left and right hippocampus, left and right cerebellum, and left and right brain stem. Additional control brain samples were isolated from non-diet treated EL and DDY mice at approximately 40 days, and 360 days of age. DDY mice served as a strain control.

**Antibodies, Primers, and Reagents**

Anti-GLUT1 (1:3000 dilution), MCT1 (1:1000), and MCT2 (1:1000) antiserum was kindly provided as a gift from I.A. Simpson (Department of Neural and Behavioral Sciences, Hershey Medical Center, Hershey, PA). GAD67 (1:3000) was purchased from Sigma Scientific. COX2 (1:3000) was purchased
from BD Biosciences. Anti–β-actin (1:5000), -VEGF (1:1000), -BDNF (1:1000), goat anti-rabbit IgG-HRP (1:5000), and goat anti-mouse IgG-HRP (1:5000) antibodies were purchased from Santa Cruz Biotechnology, Inc.. The working dilutions for each antibody (shown in parenthesis for each protein) were made in either 5% milk or 5% bovine serum albumin in Tris-buffered Saline (TBS) containing Tween 20 (pH 7.6). Oligo (dT) primers were purchased from MWG-Biotech AG (High Point, NC).

Semi-Quantitative RT-PCR

Total RNA was isolated from either homogenized one half cerebral cortex or hippocampus tissues for each of the four dietary group described in Chapter 2 (SD-UR, SD-R, KD-UR, and KD-R) using TRIzol Reagent (Invitrogen) following the manufacturer's protocol. RNA concentration and purity was determined by spectrophotometric measurements at 260 nm and 280 nm. Single strand cDNA was synthesized from total RNA (3 µg) using oligo (dT) primers (Promega, Madison, WI, USA) in a 20 µL reaction with Moloney murine leukemia virus reverse transcriptase (M-MLV RT; Promega) according to the manufacturer's protocol. Complementary DNA (cDNA) (3 µL) was used for PCR amplification of various genes (Table 10). Gradient PCR was performed to obtain optimal primer annealing temperatures. In order to determine the optimal linear range for the amplification reaction, PCR was performed at increasing cycle numbers (see
Appendix D). PCR amplification was performed with either Taq® DNA polymerase or GoTaq® DNA polymerase (Promega) using the following protocol: initial denaturation at 94°C for 2 min, followed by the previously determined optimal number of cycles (Table 10 and Appendix D) of denaturation at 94°C for 1 min; annealing at the optimal primer annealing temperature for 30-45 sec (Table 10); extension at 72°C for 1 min; and a final extension at 72°C for 6 min following the last cycle. PCR products (5–15 µL) were separated on 0.8–1.5% agarose gels containing ethidium bromide, visualized with UV light, and analyzed using either the 1d Kodak Software (Eastman Kodak Co, Rochester, NY, USA) or the FluorChem 8900 software. RT-PCR was performed on the total RNA of each sample in the absence of reverse transcriptase to control for possible DNA contamination. The relative expression of each gene analyzed was normalized to the expression of β-actin. The difference in PCR number of cycles was also used in the normalization of each gene expression.

Western Blot Analysis

One half of the cerebral cortex or the hippocampus tissue from each dietary group were homogenized in either 500 ml or 200 ml of ice-cold 1X Lysis buffer (Cell Signaling), respectively. Lysis buffer contained 20 mmol/L Tris-HCl (pH 7.5), 150 mmol/L NaCl, 1 mmol/L Na₂EDTA, 1 mmol/L EGTA, 1% Triton, 2.5 mmol/L NaPP₄, 1 mmol/L -glycerophosphate, 1 mmol/L Na₃PO₄, 1 mg/mL
leupeptin, and 1 mmol/L phenylmethylsulfonyl fluoride. Lysates were transferred to Eppendorf tubes, mixed for 1 hr at 4°C, and then centrifuged at 8,100 x g for 20 min. Supernatants were then collected and protein concentrations were estimated (Bio-Rad DC assay). Either 5, 20, or 40 μg of total protein from each sample were denatured with either SDS-PAGE sample buffer (63 mmol/L Tris-HCl (pH 6.8), 10% glycerol, 2% SDS, 0.0025% bromphenol blue, and 5% 2-mercaptoethanol) or NuPAGE® 4X LDS Sample buffer (Invitrogen) and were then loaded and resolved by SDS-PAGE on NuPAGE 4% to 12% Bis-Tris gels (Invitrogen) at 120 Volts. 40 μg of protein were loaded only for the detection of BDNF and VEGF. Proteins were transferred to a PVDF membrane overnight at 4°C and blocked in either 5% nonfat powdered milk or 5% bovine serum albumin in Tris-buffered Saline (TBS) with Tween 20 (pH 7.6) for 1 to 3 hr at room temperature. Blots were then probed with corresponding primary antibodies overnight at 4°C. The blots were then incubated with the appropriate animal specific whole HRP-conjugated secondary antibody for 1 hr at room temperature. Protein bands were visualized using ECL-Plus chemiluminescence. Blots were thoroughly washed in TBS with Tween 20 (pH 7.6) and then reprobed with additional primary antibodies. The specific ratio of the indicated protein to β-actin was analyzed by scanning densitometry (FluorChem 8900 Software). A similar protocol was used for the analysis of the control brain samples isolated from non-diet treated EL and DDY mice at approximately 40 days, and 360 days of age.
Statistical Analysis

Both ANOVA and a two-tailed $t$-test were used to evaluate the significance of differences in gene and protein expression between unrestricted and restricted groups (Statview). Differences were considered significant at $P \leq 0.05$. All values are expressed as mean ± SEM.

RESULTS

Neuroprotective Effects of CR and the KD by Modulating Brain Glutamic Acid Decarboxylase Levels

Western blot analysis showed that the protein expression of glutamic acid decarboxylase (GAD67) was significantly higher in the cortex and the hippocampus of adult EL mice fed the KD either in restricted or unrestricted amounts compared to the SD-UR fed mice (Figure 26). KC fed either in unrestricted or restricted amounts also resulted in a similar significant increase in GAD67 expression in the cortex of young adult EL mice (Figure 27). In order to confirm that the increased GAD67 protein expression levels was related to the diet and not due to some other factors, such as age- or mouse strain-related effects, GAD67 protein expression was compared between young seizure free
EL mice, and old EL mice highly seizure susceptibility. Brain samples from DDY mice, an inbred non-epileptic EL background mouse strain, were used as additional tissue control. Our results showed no differences on GAD67 protein expression in the cortex of young adult EL mice when compared to old EL and DDY mice (Figure 28). This latter finding suggests no influence of age or mouse strain on GAD67 protein expression.

To further validate any influence of the diet on GAD expression, *gad1* mRNA expression was analyzed in diet-treated EL mice. The results showed that although *gad1* mRNA expression was slightly increased in the KD groups compared to the normal control SD-UR mice, this change did not reach a significance level (Figure 29). Contrary to the effect of the KD on GAD67 protein expression, restriction of the SD had no effect on GAD67 or *gad1* expression (Figures 26 and 29). Furthermore, we sought to determine whether our system is able to detect accurately even the smallest changes on protein expression levels. For this purpose, a standard curve of increasing amounts of protein were loaded on a SDS-PAGE gel (similarly to the protocol described in the methods above) and the levels of GAD67 and β-actin were compared. With the linear range of detection of our system being between 5-20 μg of protein (Figure 30), we are confident whatever changes observed are real.

Overall, these data suggest that the KD resulted in a significant increase in the protein expression of GAD67 in EL mice, and thus may play a role in the anticonvulsant properties of the KD.
Influence of CR and the KD in the Expression of MCT1 and GLUT1

Western blot analysis was also used to examine the influence of the diet on the protein expression of MCT1 in the cortex and hippocampus of adult EL mice. Although both the KD fed unrestricted and restriction of either the KD or the SD resulted in a slight increase on the expression of MCT1 in both the cortex and the hippocampus of adult EL mice compared to the MCT1 levels in the SD-UR mice, this effect was more evident in the hippocampus (Figure 31). In particular, the hippocampus of both the SD-R and KD-UR groups had a significantly higher expression of MCT1 levels compared to the the SD-UR mice (Figure 31). No significant differences in the expression of MCT1 were observed in the cortex of adult EL mice.

Similarly, in order to confirm that the changes in MCT1 protein expression was related to the diet and not due to some other factors, such as age- or mouse strain-related effects, MCT1 protein expression was compared between young seizure free and old highly seizure susceptibility EL mice, and DDY mice. Our results, although not significant, indicate that young EL mice have a higher expression of MCT1 compared to both old EL and DDY mice (Figure 32). This finding is consistent with the developmental profile of MCT1 expression in mice having just recently been weaned from their mother. Furthermore, the diet had
no effect in the gene expression of glut1 mRNA (Figure 33). Viewing these results together, we can suggest that both CR and the KD may up-regulate MCT1 in the brain of EL mice.

Influence of CR and the KD in Neuroinflammation

Using RT-PCR, we sought to examine any potential effect that the diets may have on neuroinflammation. Our results show that both the KD and CR had no effect in modulating inflammation in the cortex of adult EL mice (Figure 34). The only interesting trend we observed is a slight reduction of CD68 in the cortex of the KD-R group. These findings suggest that both the KD and CR do not directly influence neuroinflammatory markers in EL mice.

DISCUSSION

In this study, we sought to further investigate the underlying anticonvulsant and neuroprotective mechanism of CR and the KD in EL mice. Our results are somewhat consistent with previous reports showing that both GAD67 and MCT1 may play a role in the neuronal and metabolic modulation that occurs in the diseased brain during various dietary regimes (Nehlig and Pereira de Vasconcelos, 1993; Cheng et al., 2003; Yudkoff et al., 2004; Yudkoff et al.,
2005; Bough and Rho, 2007; Nehlig et al., 2009). Specifically, we show for the first time that EL mice fed the KD in either restricted or unrestricted amounts resulted in an increase in cortical and hippocampal expression of GAD67 compared to the mice fed the SD unrestricted. Similarly GAD67 was increased in young EL mice fed the commercially available KC compared to the SD-UR mouse group.

It has been previously shown that GABA, a major inhibitory neurotransmitter of the brain, is involved in both the regulation of neuroendocrine function, as well as mediates glutamate fast synaptic inhibitory and excitatory neurotransmission in the CNS, and thus plays a major role in epileptogenesis (Soghomonian, 1994; Bradford, 1995; Meldrum, 1996; Nishimura et al., 2005) (Yudkoff et al., 2001; Kaneez and Saeed, 2009). Specifically, it was shown that GAD67 mRNA levels are increased after lesions of dopaminergic afferent neurons in the striatum, or in the hippocampus of kainic-acid induced rats, and even in humans with temporal lobe epilepsy (Feldblum et al., 1990; Soghomonian and Chesselet, 1992; Baran et al., 2004; Malfatti et al., 2007; Yamamoto and Soghomonian, 2009). In contrast to these findings, our gene expression analysis showed that gad1 was not significantly higher in the seizure susceptible SD-UR group compared to the other three dietary treated mice. This latter finding is somewhat also confirmed from our GAD67 protein analysis, where no significant differences were observed in GAD67 expression between old, highly seizure susceptible EL mice, and young, seizure free EL mice. These
findings suggest that in this natural animal model of epilepsy, the increase in cerebral GAD67 protein levels may be a result of the diet and not an effect of the epileptic EL brain. Thus, we can suggest that the neuroprotective effect of the KD may be by acting on brain excitability via an alteration in glutamate and GABA levels. In particular, the KD may accelerate the flux through glutamate decarboxylase; hence, increasing the concentration and rate of formation of GABA and reducing epileptic hyperexcitability (Erecinska et al., 1996; Yudkoff et al., 2001).

Furthermore, it has been suggested by others that convulsions may arise from either an impairment of GABAergic, or excessive glutamatergic function (Scheyer, 1998; Treiman, 2001; Mody and Pearce, 2004). Since the brain expression of GAD67 (gad1) was similar between young and old EL mice, we can suggest that seizures in the EL mice aren’t a result of abnormalities in GABAergic function. This finding is further supported by our previous work, where no aberrant GABA levels were measured in the brains of EL mice (Flavin et al., 1991; Flavin and Seyfried, 1994). Interestingly, reports of altered gene expression in epilepsy are inconsistent, probably due to discrepancies from the experimental models used. Seizure-induced nonspecific pathological changes, such as surgical lesion, hypoxia, stress, and cell degeneration may also induce alterations in gene expression that may be difficult to separate from effects of hyperactivity (Fengyi Liang and Jones E.G, J Neurosci. 1997). Immunoreactivity, mRNA levels, and/or receptor binding for glutamic acid decarboxylase (GAD),
NMDA receptor and/or AMPA receptor subunits have been reported to be increased (Feldblum et al., 1990; Najlerahim et al., 1992; Pollard et al., 1993; Kamphuis et al., 1994; Kraus et al., 1994; Marianowski et al., 1995), unchanged (Lerner-Natoli et al., 1985; Akiyama et al., 1992; Friedman et al., 1994; Gerfen-Moser et al., 1995), or decreased (Ribak et al., 1979; Gall et al., 1990; Akiyama et al., 1992; Mitsuyoshi et al., 1993; Obenaus et al., 1993; DeFelipe et al., 1994; Friedman et al., 1994; Lee et al., 1994; Bayer et al., 1995; Prince et al., 1995).

In previous studies, it was reported that MCT1 protein and mRNA levels to be significantly increased during ketosis (Leino et al. 2001; Noh et al., 2004). Although our changes in MCT1 expression were not as pronounced as those previously described, the KD was able to increase MCT1 expression in EL mice fed either the KD in restricted or unrestricted amounts. In particular, MCT1 expression was significantly different in the hippocampus of the KD-UR and SD-UR mouse groups compared to the control SD-UR mouse group. This finding may support the notion that a metabolic transition in brain utilization of different energy substrates (away from glycolysis to beta-oxidation) has take place, and the up-regulation of MCT1 expression would facilitate the transport of ketone bodies in the brain as a source of energy (Owen et al., 1967; Clarke and Sokoloff, 1999). MCT1 has long been considered a predominant factor in determining the rate at which the brain can use ketone bodies and the capacity of transport at the level of blood brain barrier endothelial cells (Halestrap and Meredith, 2004).
Based on the findings presented in Chapter 2, it was observed that the R-fed mice as well as the KD-UR mice had significantly high plasma ketone body levels (Figures 6). Hence the increased ketone levels observed in these mice along with the slight increase in MCT1 levels in the brain of the same EL mice may further support a metabolic transition in brain energy substrate utilization. Although, in this current analysis the KD and CR had no effect on \textit{glut1} expression, these findings are consistent with previous reports. Interestingly, such a report recently showed that the KD did not affect the level of expression of the GLUT1 or MCT1 and MCT2, in SWD rats (Nehlig et al., 2009). Furthermore, a restricted KD was able to increase only parenchymal and not endothelial \textit{glut1} expression in young rats (Cheng et al. 2004 Eagles).

Finally, previous findings have shown inflammation to be linked with seizure activity and vice versa (Jankowsky and Patterson, 2001; Peltola et al., 2001; Ravizza et al., 2005; Vezzani, 2005b, a), and DR to differentially influence pro-and anti-inflammatory markers (Cullingford, 2004; Branch-Mays et al., 2008; Crujeiras et al., 2008; Pan et al., 2008; Jung et al., 2009; Reynolds et al., 2009). On Chapter 1, it was mentioned that the EL mouse is associated with gross neurochemical and neuropathological symptoms associated with human idiopathic epilepsy (Flavin et al., 1991; Murashima et al., 1992; Flavin and Seyfried, 1994; Lambert et al., 1996; Fueta et al., 1998; Drage et al., 2002; Todorova et al., 2006). In this current mRNA analysis expression of the glial fibrillary acidic protein (GFAP) although present in the EL brain, it was not
differentially affected by either the KD or CR. Also both the KD and CR had no effect in modulating the expression of the pro-inflammatory cytokine CD68. Taken these findings together, although, the anticonvulsant effect of the KD and that of CR does not seem to involve a reduction in GFAP or CD68 associated neuroinflammation, we can not exclude the influence of an inflammatory component in the development and progression of seizures in the EL mouse.

Overall these data suggest that the anticonvulsant and antiepileptogenic effect of both the KD and that of CR in managing seizures in both young and old EL mice, is dependent on the reduction of glucose levels and the subsequent increase in ketone body levels. This metabolic transition from glycolysis to beta-oxidation seems to result in the alteration of the glutamate-glutamine cycle facilitated by an increase in GAD67 levels, thus increasing the production of GABA in the synapses of neurons. This increase in GABA results in the hyperpolarization of synaptic membranes and consequently a decrease in neuronal excitability (seizures). Despite these intriguing observations, the exact mechanism(s) for the neuroprotective effect of the KD and that of CR are not yet clear and remain(s) to be elucidated in future studies.
<table>
<thead>
<tr>
<th>Gene</th>
<th>GenBank Accession</th>
<th>Primer sequence</th>
<th>Nucleotide position&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Annealing Temp. °C</th>
<th>Annealing Time (sec)</th>
<th>Product size (bp)</th>
<th>Cycle Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>b-actin&lt;sup&gt;b&lt;/sup&gt;</td>
<td>NM007393</td>
<td>For 5'-TGT GAT GGT GGG AAT GGG TCA G-3'</td>
<td>126-639</td>
<td>58</td>
<td>35</td>
<td>514</td>
<td>22</td>
</tr>
<tr>
<td>NPY</td>
<td>NM_023456</td>
<td>For 5'-GAT GCT AGG TAA CAA GCG AATG G-3'</td>
<td>73-363</td>
<td>64</td>
<td>64</td>
<td>291</td>
<td>28</td>
</tr>
<tr>
<td>NPYr1</td>
<td>NM_010934</td>
<td>For 5'-CAG ATG CAG GGG CTG TCA AGC C-3'</td>
<td>558-843</td>
<td>65</td>
<td>30</td>
<td>286</td>
<td>28</td>
</tr>
<tr>
<td>NPYr5</td>
<td>AF049329</td>
<td>Rev 5'-GAC AAT CAC CAC GGA CAG GAT G-3'</td>
<td>548-956</td>
<td>65</td>
<td>30</td>
<td>409</td>
<td>30</td>
</tr>
<tr>
<td>GFAP</td>
<td>NM_010277</td>
<td>Rev 5'-GTC AGG AAG AGG ACC ATG-3'</td>
<td>137-844</td>
<td>70</td>
<td>30</td>
<td>708</td>
<td>28</td>
</tr>
<tr>
<td>GAD2</td>
<td>NM_008076</td>
<td>For 5'-CAG ATG TCA GCT ACA GCC AAG-3'</td>
<td>553-1061</td>
<td>67</td>
<td>30</td>
<td>509</td>
<td>28</td>
</tr>
<tr>
<td>GAD1</td>
<td>AF326547</td>
<td>For 5'-CGG GCC TCG AAG ACA CCA CTG TCA AAT-3'</td>
<td>261-841</td>
<td>70</td>
<td>30</td>
<td>581</td>
<td>29</td>
</tr>
<tr>
<td>CD68</td>
<td>BC021637</td>
<td>For 5'-CCG CCG CCG CCA GCA CCA CCA TCA ACC TCA C-3'</td>
<td>95-638</td>
<td>65</td>
<td>35</td>
<td>544</td>
<td>27</td>
</tr>
<tr>
<td>Glut1</td>
<td>M23384</td>
<td>For 5'-CCA AGG AGG GCC CAG ATG CTC AGG-3'</td>
<td>667-1310</td>
<td>70</td>
<td>30</td>
<td>644</td>
<td>28</td>
</tr>
<tr>
<td>SCOT</td>
<td>AB085609</td>
<td>Rev 5'-GAT GGA GAG AAT GAT TAT CAC CAA AAT ATG-3'</td>
<td>393-1346</td>
<td>67</td>
<td>35</td>
<td>954</td>
<td>27</td>
</tr>
</tbody>
</table>

<sup>a</sup>Primer nucleotide positions are based on the CDS of each given gene

<sup>b</sup>Primer sequence for b-actin is based upon Kitakata et al., 2002
Figure 26. Influence of CR and the KD on GAD67 Protein Expression in the Cortex (A), and Hippocampus (B), of Adult EL Mice. Degree of restriction was aimed to produce a 20-23% body weight reduction. Values are expressed as the ratio of the normalized protein intensity to 1, relative to the normalized intensity of β-actin, and are represented as mean ± SEM. Mean protein expression of GAD67 in the KD-fed groups was significantly higher than that in the SD-UR mice (*P < 0.05, Student's t-test). 5-20 μg of protein were loaded for each sample. For positive controls, fasted brain (F), or Heart (H) samples were used, whereas brain CT-2A tumor (T) samples served as our negative control. Conditions of dietary treatment are shown in Figure 3; (n = 3 mice per group for both cortex and hippocampus analysis).
Figure 27. Influence of CR and the KC Diet on GAD67 Protein Expression in the Cortex of Young Adult EL Mice. Degree of restriction was such to produce a 15-18% body weight reduction. Mean protein expression of GAD67 in the KC-fed groups was significantly higher than that in the SD-UR mice (*$P < 0.05$, Student's $t$-test). 5-20 μg of protein were loaded for each sample. For positive and negative controls, fasted brain (F), or Tumor (T) were used respectively. Conditions of dietary treatment are shown in Figure 9; ($n = 4$ mice per group for both cortex and hippocampus analysis). Similar protein normalization was performed as described in Figure 26.
Figure 28. Comparative Analysis of GAD67 Protein Expression in the Cortex of Young and Old EL Mice. Although, the mean protein expression of GAD67 was slightly higher in the older mice, this difference was not significant. 5-20 μg of protein were loaded for each sample; (n = 3 - 4 mice per group). Similar protein normalization was performed as described in Figure 26.
Figure 29. Influence of CR and the KD on *gad1* Gene Expression in the Cortex of Adult EL Mice. Although the mean gene expression of *gad1* in the KD-fed groups was higher compared to the *gad1* expression in the SD-UR mice, this difference was not significant. Values are expressed as the ratio of each sample's normalized gene expression intensity to 1, relative to the normalized intensity of β-actin after corrected for the difference in PCR cycle number, and are represented as mean ± SEM. Conditions of dietary treatment are shown in Figure 3; (n = 5 mice per group for both cortex and hippocampus analysis).
Figure 30. Testing the Linear Range of Protein Detection in our Western Blot System. Increasing amounts of protein were loaded on an SDS-PAGE gel and the linearity of our chemiluminescence detection was measured for GAD67 and β-actin. Individual protein intensities (levels) are shown in Appendix E. Our data indicate that the detection of GAD67 is linear up to 40 μg of protein. Similar protein normalization was performed as described in Figure 26.
Figure 31. Influence of CR and the KD on MCT1 Protein Expression in the Cortex (A), and Hippocampus (B), of Adult EL Mice. Degree of restriction was aimed to produce a 20-23% body weight reduction. The mean protein expression of MCT1 in the hippocampus was significantly higher in the KD-UR and SD-R mouse groups compared to the SD-UR mice MCT1 expression (*$P < 0.05$, Student's $t$-test). 5-20 μg of protein were loaded for each sample. For positive controls, fasted brain (F), or Spleen (S) samples were used, whereas Lung (L) samples served as a partial negative control, since MCT1 is partially (slightly) expressed in lung. Conditions of dietary treatment are shown in Figure 3; (n = 3 mice per group for both cortex and hippocampus analysis). Similar protein normalization was performed as described in Figure 26.
A. Cortex

46 kD →

SD-UR | SD-R | KD-UR | KD-R

MCT1

β-actin

B. Hippo.

46 kD →

SD-UR | SD-R | KD-UR | KD-R

MCT1

β-actin
Figure 32. Comparative Analysis of MCT1 Protein Expression in the Cortex of Young and Old EL Mice. Although, the mean protein expression of MCT1 was slightly lower in the older mice these values did not reach significance. 5-20 μg of protein were loaded for each sample; (n = 3 - 4 mice/group). Similar protein normalization was performed as described in Figure 26.
Figure 33. Influence of CR and the KD on glut1 Gene Expression in the Cortex of Adult EL Mice. Although the mean gene expression of glut1 was higher in all 3 dietary groups compared to the glut1 in the SD-UR mice, this difference was not significant. Conditions of dietary treatment are shown in Figure 3; (n = 5 mice per group for both cortex and hippocampus analysis). Similar gene normalization was performed as described in Figure 29.
Figure 34. Influence of CR and the KD on Neuroinflammation. Cortex expression of *CD68* (A), and *GFAP* (B), of adult EL mice fed the KD or SD diet in unrestricted or restricted amounts. The mean gene expression of both *CD68* and *GFAP* was the same for all groups. Conditions of dietary treatment are shown in Figure 3; (n = 5 mice per group for both cortex and hippocampus analysis). Similar gene normalization was performed as described in Figure 29.
CHAPTER SEVEN

CONCLUSION

Epilepsy is a disabling chronic and neurological disorder involving recurrent abnormal discharges of neurons that produce epileptic seizures (Engel and Pedley, 1997; Johnston and Smith, 2008), and afflicts about 1% of the US population. Despite intensive antiepileptic drug (AED) research, seizures remain unmanageable in many persons with epilepsy (Jallon, 1997; Freeman et al., 2000; Browne and Holmes, 2001). As an alternative to AEDs diet therapies have been shown to be effective in the management or control of epilepsy.

My dissertation research tested the therapeutic efficacy of different dietary regimes, such as calorie restriction (CR) and the ketogenic diet (KD), in the management of both neurological and neurodegenerative diseases, including epilepsy and a mouse model of Rett Syndrome. We successfully investigated the relationship among ketones, glucose, and seizure susceptibility under long-term antiepileptic diet therapies, and provided new evidence in the neuroprotective mechanism(s) of CR and the KD.

Implementation of CR and the KD in adult seizure susceptible EL mice resulted in the seizure control of EL seizures. This neuroprotective effect of the KD was mainly controlled through CR (Mantis et al., 2003; Mantis et al., 2004). Also seizure susceptibility in EL mice was dependent on circulating plasma glucose levels and that seizure control in EL mice depended more on the amount
than on the origin of dietary calories (Mantis et al., 2003; Mantis et al., 2004). A reduction of glucose and a subsequent increase in ketone bodies resulted in the zone of seizure management in the EL mice. A transition from glucose to ketone bodies for energy was predicted to manage EL epileptic seizures through multiple integrated changes of inhibitory and excitatory neural systems.

KetoCal®, a commercially available KD, was later evaluated for its antiepileptic and antiepileptogenic efficacy in young adult EL mice. The results supported our previous findings that seizure control in the EL mice is associated more with the amount rather than the origin of dietary calories. Also KC has both an anticonvulsant and antiepileptogenic effect in EL mice. Furthermore, my thesis for the first time showed that glucose supplementation in the drinking water of restricted mice prior to seizure testing resulted in the amelioration of the anticonvulsant efficacy of CR in a natural model of epilepsy, the EL mouse. This thesis also indicated that an unrestricted KC diet was able to reduce the seizure severity in young adult EL mice. Interestingly, this anticonvulsant effect of the KC was not depended on reduced glucose levels.

Based on the above finding with the EL mouse, next we examined the therapeutic efficacy of the KD and CR in a mouse model of Rett Syndrome. The results in this thesis showed that calorie restricted diets had a positive influence on the anxiety behavior and motor characteristics in Mecp2<sup>308/−</sup> mice. In particular, CR and the KD reduced the anxiety associated with the exploration of an unfamiliar environment (Mantis et al., 2009). These findings indicate that
calorically restricted diets may be of clinical importance in improving various aspects of the behavior in individuals with Rett.

Although comparisons of a variety of age-related changes have been made between energy-restricted and unrestricted animals in an effort to identify the specific physiological and biochemical processes that may mediate the improvement of the disease phenotype, many studies fail to provide a standardized regimen for diet implementation. This thesis sought to address some of the issues of diet implementation in disease management and to provide guidelines for data interpretation. The points raised in this thesis will help facilitate data analysis across various disease animal models and studies, as well as provide insight on the mechanism(s) by which restricted diet therapies might manage neurological and neurodegenerative diseases. Moreover, these diet implementation guidelines, on a “standard” calorically restricted paradigm for disease animal models, should maximize the therapeutic efficacy of these diets while facilitating cross-study comparisons and data interpretation.

Finally, this thesis discussed the potential biochemical mechanism(s) by which CR and the KD might reduce seizure susceptibility in EL mice. We suggest that the transition from glucose to ketone bodies as a major energy fuel for the brain produces multiple changes in gene-linked metabolic networks. It is these changes that gradually adjust neurotransmitter pools and membrane excitability to restore the physiological balance of excitation and inhibition (Greene et al., 2003). This thesis showed that the metabolic transition from
glycolysis to beta-oxidation seems to result in the alteration of the glutamate-glutamine cycle facilitated by an increase in GAD67 levels, thus increasing the production of GABA in the synapses of neurons. This increase in GABA results in the hyperpolarization of synaptic membranes and consequently a decrease in neuronal excitability (seizures). Interestingly, while the levels of γ-aminobutyric acid (GABA) are increased in synaptosomes via the increased action of glutamic acid decarboxylase during the metabolism of ketone bodies for energy, the levels of aspartate decrease due to the formation of glutamate (Yudkoff et al., 2001).

In addition, this thesis showed that MCT1 expression was significantly different in the hippocampus of the KD-UR and SD-R mouse groups compared to the control SD-UR mouse group. This finding may support the notion that a metabolic transition in brain utilization of different energy substrates (away from glycolysis to beta-oxidation) has take place, and the up-regulation of MCT1 expression would facilitate the transport of ketone bodies in the brain as a source of energy. CR could also influence seizure susceptibility through the neuroendocrine system involving leptin signaling and increased levels of neuropeptide-Y, a peptide with antiepileptic and anticonvulsant effects (Mazarati and Wasterlain, 2002; Colmers and El Bahh, 2003; Husum et al., 2004; Richichi et al., 2004). In addition, ketone body metabolism could increase membrane ionic pump activity (Kaur and Kaur, 1990; Veech et al., 2001). Increased pump activity could increase membrane potential in neurons while also increasing neurotransmitter uptake in glia (Greene et al., 2003). We do not exclude the
possibility that CR may reduce seizure susceptibility in EL mice through additional mechanisms (Schwartzkroin, 1999; Stafstrom and Bough, 2003). Some of the cellular systems that are described above and potentially are modulated through CR to influence brain excitability are illustrated in Figure 35 (Mantis et al., 2004).

Despite these intriguing observations, the exact mechanism(s) for the neuroprotective effect of the KD and that of CR are not yet clear and remain(s) to be elucidated in future studies. Nevertheless, it is our contention that CR reduces seizure susceptibility through multiple integrated systems providing a multifactorial therapy to a multifactorial disease.
Figure 35. Perspectives on the Metabolic Management of Epilepsy Through a Dietary Reduction of Glucose and Elevation of Ketone Bodies. A dietary reduction in blood glucose levels will increase ketone utilization for energy. This is expected to shift the neural environment from excitation to inhibition through multiple integrated systems. Abbreviations: GLUT-1 (glucose transporter), MCT (monocarboxylate transporter), PFK (phosphofructokinase), PDH (pyruvate dehydrogenase), SCOT (succinyl-CoA-acetoacetate-CoA transferase), β-OHB (β-hydroxybutyrate), β-HBDH (β-hydroxybutyrate dehydrogenase), NPY (Neuropeptide Y), GABA (gamma-aminobutyric acid). The figure is modified from Mantis et al., Nutr Metab (London), 1(1):11, 2004.
APPENDIX A.

PUBLICATIONS RELATED TO DISSERTATION


Mantis JG, Zimick NC, Centeno NA, and Seyfried TN. Glucose reduces the antiepileptic and anticonvulsant effects of the ketogenic diet in EL mice (in preparation).


Other Publications


ABSTRACTS


APPENDIX B.

*Sequencing Analysis of GluR4 in EL mice*

INTRODUCTION

Glutamate and activation of its four different types of receptors (AMPA, NMDA, kainate, and metabotropic) play a critical role in brain development, such as synaptic plasticity, neuronal migration, and synaptogenesis, as well as neurotoxicity (Meldrum and Garthwaite, 1990; Collard et al., 1993; Yen et al., 1993; Behar et al., 1994; Dingledine et al., 1999; Ritter et al., 2002; Cossart et al., 2005). Epileptic seizures, in general, stem from an abnormal balance of excitation and inhibition, and thus considerable effort has been expended on characterizing inhibitory and excitatory neurotransmission abnormalities in the epileptic brain (Engel, 1992; Loscher, 1993; Chapman et al., 1996; Engel and Pedley, 1997). Previous findings have shown both a decrease in GABAergic inhibition and an increase in glutamatergic excitation to be involved in the cellular mechanisms underlying epileptogenesis in human and animal models of epilepsy (Dichter, 1989; Löscher, 1989; Loscher, 1993; Chapman et al., 1996; Chapman, 1998; Dingledine et al., 1999; Meldrum et al., 1999; Chapman, 2000; Silva et al., 2002).

Antagonists of glutamatergic NMDA and AMPA receptors have been shown to be anticonvulsant in many animal models of epilepsy (Meldrum and
Horton, 1980; Chapman et al., 1982; Meldrum et al., 1992). Although, in epileptic mice several genetic alterations have been shown to be epileptogenic, no specific mutation relating to glutamatergic function has yet been linked to human epilepsy (Chapman, 1998). We recently identified a novel QTL, *El-N*, for age-dependent predisposition to seizures on proximal Chromosome 9 of naïve EL mice, that were tested for seizures only once at 150 days of age (Todorova et al., 2006). Although, this region of chromosome 9 had not been previously associated with seizures in other animal epilepsy models and no epilepsy locus has been mapped on human chromosome 11, which is syntenic to the region on mouse chromosome 9 containing *El-N* (Todorova et al., 2006), glutamate receptor subunit 4 gene (*GluR4*) maps to this same region of Chromosome 9. Interestingly, GluR4, one of four genes (GluR1-4) that code for the AMPA receptor, is differentially expressed in the brain (Sato et al., 1993; Myers et al., 1999), and has also been associated with epilepsy (van de Bovenkamp-Janssen et al., 2006).

In this study, we performed a sequencing analysis of GluR4, in epileptic and non-epileptic mice in order to identify potential seizure-associated polymorphisms of GluR4 in EL mice. Our results revealed a few conserved single polymorphisms, suggesting that GluR4 may not be responsible for EL seizures.

METHODS AND MATERIALS
Mice

EL, EL/Frk, DDY, and C57BL/6J were used in this study. EL/Frk is a strain of EL mice that were obtained from The Jackson Laboratory (Bar Harbor, ME). As mentioned in chapter 6, DDY mice, are an inbred non-epileptic EL background mouse strain. The C57BL/6J strain is another control non-epileptic strain. All mice were maintained and housed as described in the Materials and Methods section of Chapter 2.

GluR4 sequencing

Total RNA was isolated from homogenized whole brain of EL/suz, EL/Frk, DDY, and C57BL/6J mice using TRIzol Reagent (Invitrogen) according to the manufacturer's protocol. cDNA libraries for the EL, DDY, and C57BL/6J mice, were made following a similar protocol as described in the RT-PCR protocol in the chapter 6 (n= 3 mice per group). The whole cds sequence of GluR4 was then amplified using the GluR4_214F and GluR_2922R primer sets (Forward 5’-ATG AGG ATT ATT TGC AGG CAG ATT G and Reverse 5’-GGG GAA GCT TGG TGT GAT GAG-3’) (Figure 1). PCR amplification was performed with Taq DNA polymerase (Promega) using the following protocol: initial denaturation at 94°C for 2 min, followed by 33 cycles at 94°C for 1 min; annealing at 65°C for 40 s; extension at 72°C for 2 min adding 3 s every cycle; and a final extension at 72°C for 6 min following the last cycle. Amplified PCR products were purified
using a PCR purification kit (MO BIO Laboratories, Solana Beach, CA) and were then visualized by 1% agarose gel electrophoresis. DNA concentration was estimated using a Low DNA Mass Ladder (Invitrogen, Carlsbad, CA) by gel electrophoresis. Approximately 25 fmol of the purified PCR product was used in the sequencing reaction following manufacturer's instructions for the CEQ DTCS kit (Beckman Coulter, Fullerton, CA). The amount of cDNA used varied depending on the size of the PCR fragment. The nested primers illustrated in Figure 1, were for the sequencing reactions to obtain double-stranded sequence of GluR4. Their sequence is shown in Table 3.

Sequencing reactions were performed at 96°C for 20 s, 50°C for 20 s, and 60°C for 240 s based on a 32 cycle reaction. Sequencing products were ethanol precipitated in cold 95% ethanol, washed twice with cold 70% ethanol, dried for 20 minutes, and then re-dissolved in sample loading solution provided by the manufacturer (Beckman Coulter, Fullerton, CA). The individual mouse strain cDNA sequence alignments were then compared to that of GluR4 from Mus Musculus [GenBank: AB022913]

RESULTS

The comparative sequencing analysis of GluR4 to the in-house C57BL/6J GluR sequence revealed a single nucleotide base pair change, at position 1029, found in EL, EL/Frk, and DDY mice. This caused a C->A transition, but resulted
in no amino acid change (Table 1). Another single nucleotide base pair change, at position 2338, was found only in EL mice, resulted in a G->A transition and caused an amino acid change from Glycine to Arginine (Table 1). However, when compared to the *Mus Musculus* GenBank sequence [AB022913], this GluR4 change in EL mice was not observed (inferred from Table 2). A third single nucleotide base pair change, at position 2344, was again found only in EL mice, which caused an amino acid change from Alanine to Proline (Table 1). However, once again this change was not observed between the EL and the GenBank GluR4 sequences (inferred from Table 2). Finally, a fourth single nucleotide base pair change, at position 2358, was found only in EL mice when compared to the in-house C57BL/6J GluR4 sequence. This latter A->C transition was though conserved. It should be noted that the same polymorphic changes were observed when partial GluR4 amplicons were TA cloned in a pCR® 2.1 vector, subsequently transformed in E-coli, and then later purified and sequenced (data not shown).

**DISCUSSION**

The few GluR4 variations that we observed between the EL and in-house C57BL/6J inbred mouse strain were either conserved or not observed in the *Mus Musculus* GluR4 sequence previously published at GenBank [AB022913]. It is
not yet clear if this later discrepancy represents an error in the already published GenBank GluR4 sequence or a population genetic variation among B6 mouse strains. However, since the two single polymorphisms that resulted in an amino acid change are only present in the EL mice and not in the epileptic EL/Frk mice, it is unlikely that GluR4 may be associated with the seizure phenotype in EL mice. Taken together, we can conclude that GluR4 is not associated with the seizure phenotype in the EL mice. However, we cannot exclude the possibility that GluR4 expression might be influenced by different seizure testing environments (Naka et al., 2005).
Figure 1: GluR4 PCR Amplification and Sequencing Primer Construct. Forward primer 167F and reverse primer 2922R were used for the amplification of the GluR4 cDNA libraries. All primers were used as nesting primers for GluR4 sequencing.
Table 1. Summary of GluR4 Nucleotide Variations in EL and DDY mice

<table>
<thead>
<tr>
<th>Mouse strain</th>
<th>Nucleotide position</th>
<th>cDNA change</th>
<th>Amino Acid change</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL</td>
<td>1029</td>
<td>C -&gt; A</td>
<td>Ala -&gt; Ala</td>
</tr>
<tr>
<td>EL/Frk</td>
<td>1029</td>
<td>C -&gt; A</td>
<td>Ala -&gt; Ala</td>
</tr>
<tr>
<td>DDY</td>
<td>1029</td>
<td>C -&gt; A</td>
<td>Ala -&gt; Ala</td>
</tr>
<tr>
<td>EL</td>
<td>2338</td>
<td>G -&gt; A</td>
<td>Gly -&gt; Arg</td>
</tr>
<tr>
<td>EL</td>
<td>2344</td>
<td>G -&gt; C</td>
<td>Ala -&gt; Pro</td>
</tr>
<tr>
<td>EL</td>
<td>2358</td>
<td>A -&gt; C</td>
<td>Ala -&gt; Ala</td>
</tr>
</tbody>
</table>

*Nucleotide variation compared to the C57BL/6J GluR4 sequence from the Boston College animal facility at Higgins*
Table 2. Summary of GluR4 Nucleotide Variations in EL and DDY mice

<table>
<thead>
<tr>
<th>Mouse strain</th>
<th>Nucleotide position</th>
<th>cDNA change</th>
<th>Amino Acid change</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL</td>
<td>1029</td>
<td>C -&gt; A</td>
<td>Ala -&gt; Ala</td>
</tr>
<tr>
<td>EL/Frk</td>
<td>1029</td>
<td>C -&gt; A</td>
<td>Ala -&gt; Ala</td>
</tr>
<tr>
<td>DDY</td>
<td>1029</td>
<td>C -&gt; A</td>
<td>Ala -&gt; Ala</td>
</tr>
<tr>
<td>EL/Frk</td>
<td>2338</td>
<td>A -&gt; G</td>
<td>Arg -&gt; Gly</td>
</tr>
<tr>
<td>DDY</td>
<td>2338</td>
<td>A -&gt; G</td>
<td>Arg -&gt; Gly</td>
</tr>
<tr>
<td>EL/Frk</td>
<td>2344</td>
<td>C -&gt; G</td>
<td>Pro -&gt; Ala</td>
</tr>
<tr>
<td>DDY</td>
<td>2344</td>
<td>C -&gt; G</td>
<td>Pro -&gt; Ala</td>
</tr>
<tr>
<td>EL/Frk</td>
<td>2358</td>
<td>C -&gt; A</td>
<td>Ala -&gt; Ala</td>
</tr>
<tr>
<td>DDY</td>
<td>2358</td>
<td>C -&gt; A</td>
<td>Ala -&gt; Ala</td>
</tr>
</tbody>
</table>

*aNucleotide variation compared to the GenBank [AB022913] mouse GluR4 sequence from Sakimura & Ikeno, 1999*
Table 3. GluR4 nested primer sequences

<table>
<thead>
<tr>
<th>GluR4 primer s</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>167F</td>
<td>For 5'-GTG AGA GAA AGA GAG GAG AGC G-3'</td>
</tr>
<tr>
<td>582R</td>
<td>Rev 5'-GGG GAA GCT TGG TGT GAT GAG-3'</td>
</tr>
<tr>
<td>741F</td>
<td>For 5'-GAA TGG ATG GCA TGT CAG TGC G-3'</td>
</tr>
<tr>
<td>868R</td>
<td>Rev 5'-GAA GCC TTT CTA TCT CAC AAT C-3'</td>
</tr>
<tr>
<td>1231F</td>
<td>For 5'-GGA CAG GGA ATT GAC ATG GAG-3'</td>
</tr>
<tr>
<td>1377R</td>
<td>Rev 5'-GCC AAC CTT TCG AGG TCC TGT G3'</td>
</tr>
<tr>
<td>1728F</td>
<td>For 5'-GGT GCG AGA GGA GGT CAT CGA C-3'</td>
</tr>
<tr>
<td>1863R</td>
<td>Rev 5'-GCA CAT CCA GAT CTC ATA GGC C-3'</td>
</tr>
<tr>
<td>2207F</td>
<td>For 5'-CAG AAA TTG CCT ATG GAA CAC-3'</td>
</tr>
<tr>
<td>2346R</td>
<td>Rev 5'-GCC CTC AGC TGT AGT TCT AGT G-3'</td>
</tr>
<tr>
<td>2611F</td>
<td>For 5'-GTT GAC TCC AAG GAC AAG ACG-3'</td>
</tr>
<tr>
<td>2922R</td>
<td>Rev 5'-TTG TAG GTC CGA TGC AAT GAC-3'</td>
</tr>
</tbody>
</table>

*Primer nucleotide positions are based on the CDS of each given gene*
APPENDIX C.

Assay for the S ectrophotometric Measurement of β-Hydroxybutyrate (D-3-hydroxybutyrate)

METHODOLOGY


\[
\beta\text{-HBDH}
\]

\[
\beta\text{-Hydroxybutyric acid} + \text{NAD}^+ \rightleftharpoons \text{Acetoacetate} + \text{NADH} + \text{H}^+
\]

\[
K_{eq} = [\text{acetoacetate}][\text{NADH}][\text{H}^+] / [\beta\text{-hydroxybutyrate}][\text{NAD}^+] 
\]

Notes: At pH 7, the \( K_{eq} \) is \( 1.42 \times 10^{-2} \) M and the formation of β-hydroxybutyrate is favored. At pH 7, the formation of acetoacetate can also be determined from the above reaction without modifications. Increasing the pH above 7 (lowering [H⁺]) the formation of acetoacetate can still be determined by shifting the equilibrium to the right. For i.e., at pH 9.5 the \( K_{eq} \) becomes 4.5, but the formation of acetoacetate is favored slightly. Finally, for β−OHB the molar absorptivity (extinction coefficient) is 6.22 1/M* cm, thus for 1M β−OHB the change in Abs should equal to 6.22.
B. General Instrument/supplies Requirements

1. Molecular Devices SpectraMax M2 or M5 microplate reader with a 340 nm excitation filter (wavelength). The program name is labeled as b-OHB new 2.

2. Half-area clear microplates (Corning cat. No. 3695) (100 μl working volume, with flat bottom wells).

3. Eppendorff repeater Plus pipette (2-20 μl volume), plus regular p20, p200, and p1000 pipettors.

C. Reagent/Buffers

1. 1 M pH 9.9 2-Amino-2-methylpropanol (AMP) \( (pK_a 9.7)^* \)

Notes: To prepare 10 ml of 1 M, add 959 μl of stock of 2-Amino-2-methylpropanol at a concentration of 10.43 M (Sigma cat. No. A-9199) to 6 ml of ddH₂O. pH solution to 9.9, then bring total solution volume to 10 ml using ddH₂O. Store AMP at room temperature.

The purpose for AMP or a buffer with a free amine group is to remove the acetoacetate and the proton \( (H^+) \) generated in the above reaction. If acetoacetate remains in the rxn it can drive reaction backwards thus interfering
with the accurate estimation of β-hydroxybutyrate. The acetoacetate is removed in a shift base reaction (see below) and the proton is captured by the high pH.

\[
\text{Shift base rxn: } \text{-C=O} + \text{-NH}_2 \rightleftharpoons \text{C=N} + \text{H}_2\text{O}
\]

2. 0.050 \text{ M } \text{NAD}^+ \text{ dissolved in CO}_3/\text{HCO}_3 \text{ buffer} \quad 0.0995 \text{ g/3ml}

Notes: The \text{NAD}^+ can be purchased from Roche Applied Science (cat. No. 775762). Store \text{NAD}^+ at dessicator at 4°C. If you make a 0.050M stock \text{NAD}^+ solution you can store it at −20°C but it is recommended to make it fresh each time.

3. 0.1 \text{ M EDTA} \quad .372 \text{ g/10 ml}

Notes: Store 0.1M EDTA solution at room temperature

4. 1.33\% (w/v) β-Hydroxybutyrate dehydrogenase (enzyme) dissolved in 3.2 \text{ M (NH}_4\text{)}_2\text{SO}_4

Notes: β-Hydroxybutyrate dehydrogenase stock solution is made as follows: Weigh enzyme and dissolve it ddH\text{2O} (ie. 1.97 mg of enzyme in 1.5 ml ddH\text{2O}). Then add solid (NH\text{4})\text{2SO}_4 to get a 3-3.2 M solution (~0.62 grams for 1.5 ml). Upon adding ammonium sulfate the solution will turn turbid. As soon as enzyme is dissolved, you can store it at 4°C indefinitely. To run assay for a whole half size plate take 150 μl from enzyme stock and add 240 μl of ddH\text{2O} (a 2.6 fold
dilution), otherwise prepare as much enzyme as needed. β-Hydroxybutyrate dehydrogenase can be bought from Biocatalytics Inc. (cat. No. HBDH-101).

5. 1.2% BSA (Bovine serum albumin)  1.2 g/100 ml

6. (R)-(−)-3-hydroxybutyric acid, sodium salt

Notes: β-hydroxybutyrate salt can be purchased from SigmaAldrich (cat. No. 298360-1G). Powder is stored at room temperature.

D. Collection and Perchloric acid Treatment of blood  *(This step is optional since assay can be done on plasma or serum alone too)*

1. Collect blood in heparinized tube and spin at 6000 rpm for 10 minutes.

2. Immediately separate plasma from pellet. (Plasma may then be stored at -80°C for later use in the assay).

3. Plasma is then treated with 0.055 M Perchloric acid (denatures all proteins/enzyme that you may have in your blood sample that may interfere or degrade β-hydroxybutyrate) (3.6%) by a dilution factor of 5 (1 part plasma to 4 parts HClO₄). Vortex sample and put it on ice for 15 minutes.

4. Centrifuge sample for 2 minutes at ~12,000 rpm on table centrifuge (or maximum speed).
5. Take a known aliquot volume of acidified plasma and neutralize it with 3.0 M potassium bicarbonate to a pH of 5.0-6.5 (test with pH strips) (ie. 900 μl of acidified plasma add 90 μl of 3.0 M KHCO₃).

6. Let partially neutralized solution sit on ice for 15 minutes (longer incubation will result in complete neutralization—up to 1-2 hrs) with top open.

Notes: If you do not neutralize your sample with a base, the perchloric acid will degrade your β-hydroxybutyrate, thus making the above reaction go slower.

7. Centrifuge solution at about 12,000 rpm for 4 minutes and then aspirate supernatant to new tube for usage in the assay. Store treated plasma in a few aliquots in –80°C. As an option you can test again with pH strip to be sure of pH of solution. Final plasma is diluted approximately 5.2 times.

E. Cocktail Reagent Buffer: (sufficient for a full half size microplate at 50 μl of cocktail/well)

<table>
<thead>
<tr>
<th>Amount (ml)</th>
<th>Concentration in cocktail (mM)</th>
<th>Reagent</th>
<th>Concentration in well (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>100.0</td>
<td>1M AMP pH 9.9</td>
<td>50.0</td>
</tr>
<tr>
<td>3.0</td>
<td>30.0</td>
<td>50 mM NAD⁺</td>
<td>15.0</td>
</tr>
<tr>
<td>0.2</td>
<td>4.0</td>
<td>100 mM EDTA</td>
<td>2.0</td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td>ddH₂O</td>
<td></td>
</tr>
<tr>
<td>5.0 ml</td>
<td>total volume</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

225
Notes: If not running a whole plate, make as much cocktail reagent buffer as needed. Cocktail should be stored at room temperature after it is prepared and while waiting to run assay. Cocktail should always be fresh for each assay run.

F. Preparation of β-hydroxybutyrate standards

1. Prepare a standard stock solution of β-hydroxybutyrate at a concentration of 165 mM in ddH$_2$O. Stock standard should be stored at 4°C.

   Notes: To prepare a 165 mM stock standard solution of β-hydroxybutyrate, dissolve 0.0208 gram of β-hydroxybutyrate in 1 ml of ddH$_2$O (0.165 M * 0.001 L * 126.09 g/mole).

2. Using the stock 165 mM solution, prepare the following β-hydroxybutyrate standards: 16.5 mM, 1.65 mM, 0.25 mM, 0.165 mM, 0.0825 mM, 0.04125 mM, 0.033 mM, 0.0165 mM. All standards should be stored at -20°C.

G. Enzyme protocol

1. Prepare cocktail reagents as indicated above (sections C and E).

2. Prepare Standards as indicated above (section F).
3. Pipette 50 \( \mu l \) of cocktail in each well (this depends on how many samples you have).

4. Pipette first 50 \( \mu l \) of ddH\(_2\)O in triplicate and then 50 \( \mu l \) of the standards. Set up a standard curve from your plate by pipetting the following standard solutions in rows 1-3 (in triplicate), wells A through H.

<table>
<thead>
<tr>
<th>Well (row 1-3)</th>
<th>Standard solution (( \mu l ))</th>
<th>ddH(_2)O (( \mu l ))</th>
<th>Concentration in well (( \mu g ))</th>
<th>Concentration in well (mM)</th>
<th>Dilution factor (DF) of standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>50 of H</td>
<td>0</td>
<td>0.02080485</td>
<td>0.0165</td>
<td>10000</td>
</tr>
<tr>
<td>C</td>
<td>50 of G</td>
<td>0</td>
<td>0.0832194</td>
<td>0.0330</td>
<td>5000</td>
</tr>
<tr>
<td>D</td>
<td>50 of F</td>
<td>0</td>
<td>0.13003031</td>
<td>0.04125</td>
<td>4000</td>
</tr>
<tr>
<td>E</td>
<td>50 of E</td>
<td>0</td>
<td>0.52012125</td>
<td>0.0825</td>
<td>2000</td>
</tr>
<tr>
<td>F</td>
<td>50 of D</td>
<td>0</td>
<td>1.0402425</td>
<td>0.165</td>
<td>1000</td>
</tr>
<tr>
<td>G</td>
<td>50 of C</td>
<td>0</td>
<td>1.576125</td>
<td>0.250</td>
<td>660</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes: If your standard curve does not give you a good \( r^2 \) value, you may want to make each of the standards individually, instead of making serial dilutions of other standards. Also make sure pipette is calibrated, since that may affect your \( r^2 \) value. Using an automatic repeat pipette may reduce variability.
5. Pipet in triplicates your plasma samples to the rest of the plate (treated with perchloric acid or not) to make a final volume of sample or diluted sample of 100μl per well.

6. Open the bOHB template program at the microplate reader and read pathcheck. This is plate one (P1) from the bOHB new 2 assay protocol from the lab assay menu (see left box below).

Notes: Pathcheck measures the depth (optical pathlength) of your samples in the microplate reader and in coordination with the machine’s SoftMax®Pro software, the program automatically normalizes the well absorbance to a cuvette of an equivalent pathlength of 1cm. This function allows you to eliminate standard curves, for compounds with known absorptivity and the concentration of a sample can be calculated directly from its absorbance.
7. After reading the pathcheck (P1), read plate two (P2) (right box above) for baseline from the bOHB new 2 assay protocol. This is your initial absorbance ($\text{Abs}_{\text{initial}}$).

8. After reading baseline, initiate reaction by adding 5 $\mu$l of $\beta$-hydroxybutyrate dehydrogenase enzyme to each well. This enzyme solution is made by diluting 150 $\mu$l of the stock enzyme (see section C step 4) in 240 $\mu$l of ddH$_2$O. Mix stock enzyme before making this enzyme solution, since the enzyme will precipitate over time due to the ammonium sulfate suspension.

Notes: If you are not planning to use whole 96-well plate, make as much enzyme as needed.

9. After adding the enzyme to each well read pathcheck again. This is plate four (P4) (see left box below) from the bOHB new 2 assay protocol.

Notes: The pathcheck principle function, is explained Step 6 (see above).

10. Follow reaction to completion by reading the plate for 40-50 times at 50-60 sec intervals (assay usually takes about 50 minutes to got to completion), by reading plate three (P3) (see right box below) from the bOHB new 2 assay protocol. This is your final absorbance ($\text{Abs}_{\text{final}}$).
11. Prepare similar excel template in order to calculate standard curve and assay sample results (ie. my folder (John) > Research Protocols > Ketone assay > Veach’s > Spectr. bOHB spreadsheet).

Notes: If you use a M2 or M5 microplate reader, export the data in excel format (from file menu > export data as .txt. The open .txt file using excel).

12. Based on the standard curve (plotting well b-OHB concentration and net absorbance change), calculate the b-OHB concentrations of your unknown samples.

Notes: You may need to calculate the drift for both your standard and your samples, in order to get an exact estimate of your β-OHB concentrations. Drift results from other metabolites (lactate, malate, etc) that may exist in your enzyme suspension that use or produce NADH or NAD⁺ in a metabolic reaction may interfere with the kinetics of your ketone assay, thus resulting in incorrect fluorescence reaction signal. If drift is positive (positive slope) you need to
subtract your drift from your $D_{\text{Abs}}$ $A_{\text{bs}}_{\text{final}} - A_{\text{bs}}_{\text{initial}}$, whereas if the drift is negative (negative slope) you need to add your drift to your $D_{\text{Abs}}$ $A_{\text{bs}}_{\text{final}} - A_{\text{bs}}_{\text{initial}}$. An example is shown below.
Figure 2: Drifting analysis of ketone assay.
APPENDIX D. Analyses of Primer Cycle Optimization

GAD2 cycle optimization

\[ y = 462850x - 1E+07 \]

\[ R^2 = 0.9547 \]

---

GAD1 cycle optimization

\[ y = 927300x - 2E+07 \]

\[ R^2 = 0.9897 \]
GFAP cycle optimization

\[ y = 3272.6x - 57397 \]
\[ R^2 = 0.9268 \]

GLUT1 cycle optimization

\[ y = 129250x - 2E+06 \]
\[ R^2 = 0.9902 \]
NPY cycle optimization

\[ y = 1934x - 39927 \]

\[ R^2 = 0.9858 \]

SCOT cycle optimization

\[ y = 12462x - 252296 \]

\[ R^2 = 0.9039 \]
NPY r1 cycle optimization

\[ y = 5683.1x - 124302 \]

\[ R^2 = 0.9719 \]

NPY r5 cycle optimization

\[ y = 4001.3x - 78333 \]

\[ R^2 = 0.8764 \]
APPENDIX E.

Detection of Western Blot Linearity

<table>
<thead>
<tr>
<th>Protein (µg)</th>
<th>GAD67</th>
<th>β-actin</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>48990</td>
<td>32660</td>
</tr>
<tr>
<td>5</td>
<td>48990</td>
<td>65320</td>
</tr>
<tr>
<td>10</td>
<td>138805</td>
<td>155135</td>
</tr>
<tr>
<td>20</td>
<td>269445</td>
<td>302105</td>
</tr>
<tr>
<td>40</td>
<td>310270</td>
<td>424580</td>
</tr>
<tr>
<td>60</td>
<td>351095</td>
<td>465405</td>
</tr>
<tr>
<td>80</td>
<td>400085</td>
<td>522560</td>
</tr>
<tr>
<td>100</td>
<td>440910</td>
<td>498065</td>
</tr>
</tbody>
</table>

a. Relative Intensity of GAD67 and β-actin using chemiluminesce
REFERENCES


238


Barzilai N. and Bartke A. (2009) Biological approaches to mechanistically understand the healthy life span extension achieved by caloric restriction and modulation of hormones. The journals of gerontology 64, 187-191.


Harney J. P., Madara J. and l'Anson H. (2002) Effects of acute inhibition of fatty acid oxidation on latency to seizure and concentrations of beta hydroxybutyrate in plasma of rats maintained on calorie restriction and/or the ketogenic diet. Epilepsy research 49, 239-246.


Krizova E. and Simek V. (1996) Influence of intermittent fasting and high-fat diet on morphological changes of the digestive system and on changes of lipid metabolism in the laboratory mouse. Physiological research / Academia Scientiarum Bohemoslovaca 45, 145-151.


consistent with a postulated anti-aging mechanism in rodents. Proceedings of the National Academy of Sciences of the United States of America 93, 4159-4164.


Murashima Y. L., Kasamo K. and Suzuki J. (1992) Developmental abnormalities of GABAergic system are involved in the formation of epileptogenesis in the EL. Neurosciences 18 (Suppl. 2), 63-73.


261


Nishimura T., Schwarzer C., Gasser E., Kato N., Vezzani A. and Sperk G. (2005) Altered expression of GABA(A) and GABA(B) receptor subunit mRNAs in the hippocampus after kindling and electrically induced status epilepticus. Neuroscience 134, 691-704.


oxidation and spares lean body mass: comparison to hypocaloric high-carbohydrate diet. Metabolism: clinical and experimental 43, 1481-1487.


Poiley S. M. (1972) Growth tables for 66 strains and stocks of laboratory animals. Laboratory animal science 22, 758-779.


Todorova M. T., Burwell T. J. and Seyfried T. N. (1999a) Environmental risk factors for multifactorial epilepsy in EL mice. Epilepsia 40, 1697-1707.


Wolfer D. P. and Lipp H. P. (2000) Dissecting the behaviour of transgenic mice: is it the mutation, the genetic background, or the environment? Experimental physiology 85, 627-634.


273

Yamamoto N. and Soghomonian J. J. (2009) Metabotropic glutamate mGluR5 receptor blockade opposes abnormal involuntary movements and the increases in glutamic acid decarboxylase mRNA levels induced by l-DOPA in striatal neurons of 6-hydroxydopamine-lesioned rats. Neuroscience.


